Abstract:
A method for measuring an electron signal or an electron induced signal may be provided. The method may include providing a threshold number of events or a threshold event rate for a pixel on a detector. The method may include collecting from the detector the threshold number of events or determining that the threshold event rate is achieved, wherein a signal at the detector is an electron signal or an electron induced signal from a sample. The method may include modulating an intensity of an electron source directed to the sample in response.
Abstract:
An apparatus for monitoring of an ion beam. The apparatus may include a processor; and a memory unit coupled to the processor, including a display routine, where the display routine operative on the processor to manage monitoring of the ion beam. The display routine may include a measurement processor to receive a plurality of spot beam profiles of the ion beam, the spot beam profiles collected during a fast scan of the ion beam and a slow mechanical scan of a detector, conducted simultaneously with the fast scan. The fast scan may comprise a plurality of scan cycles having a frequency of 10 Hz or greater along a fast scan direction, and the slow mechanical scan being performed in a direction parallel to the fast scan direction. The measurement processor may also send a display signal to display at least one set of information, derived from the plurality of spot beam profiles.
Abstract:
A surface processing apparatus is an apparatus which performs surface processing on an inspection object 20 by irradiating the inspection object with an electron beam. A surface processing apparatus includes: an electron source 10 (including lens system that controls beam shape of electron beam) which generates an electron beam; a stage 30 on which an inspection object 20 to be irradiated with the electron beam is set; and an optical microscope 110 for checking a position to be irradiated with the electron beam. The current value of the electron beam which irradiates the inspection object 20 is set at 10 nA to 100 A.
Abstract:
A current regulation method of multiple beams includes acquiring a current density distribution; selecting at least one beam whose current density is equal to or more than a threshold; measuring a current value of the at least one beam respectively by varying a voltage applied to the Wehnelt electrode and acquiring a correlation between the voltage and the current value; moving a stage to a position where the at least one beam is allowed to enter a current detector each time writing of a stripe region is completed; measuring, after moving the stage, a current value of the at least one beam while beams of the multiple beams whose current density is less than the threshold are blocked; operating a target voltage value applied to the Wehnelt electrode to cause the current value measured to be a target current value; and applying the target voltage value to the Wehnelt electrode.
Abstract:
A defining aperture plate having at least two differently sized apertures is used in conjunction with at least two charge collectors. Because of the difference in aperture width, the two charge collectors receive different amounts of ions, where the amount is proportional to the associated aperture width. By monitoring the ratio of the charge collected by the first charge collector to the charge collected by the second collector, the amount of erosion can be monitored and optionally compensated for.
Abstract:
A charged particle beam writing apparatus includes a first limiting aperture member, in which a first opening is formed, to block a charged particle beam having been blanking-controlled to be beam “off”, and to let a part of the charged particle beam having been blanking-controlled to be beam “on” pass through the first opening, a first detector to detect a first electron amount irradiating the first limiting aperture member, in a state where beam “on” and beam “off” are repeated, a first integration processing unit to generate a first integrated signal by integrating components in a band sufficiently lower than a band of a repetition cycle of beam “on” and beam “off”, in a first detected signal detected for obtaining the first electron amount, and a first irregularity detection unit to detect irregularity in a dose amount of the charged particle beam by using the first integrated signal.
Abstract:
An ion implant apparatus and moveable ion beam current sensor are described. Various examples provide moving the ion beam current sensor during an ion implant process such that a distance between the ion beam current sensor and a substrate is maintained during scanning of the ion beam toward the substrate. The ion beam current sensor is disposed on a moveable support configured to move the ion beam current sensor in a first direction corresponding to the scanning of the ion beam while the substrate is moved in a second direction.
Abstract:
A multi charged particle beam writing apparatus of the present invention includes an aperture member to form multiple beams, a plurality of first deflectors to respectively perform blanking deflection of a corresponding beam, a second deflector to collectively deflect the multiple beams having passed through the plurality of openings of the aperture member so that the multiple beams do not reach the target object, a blanking aperture member to block each beam that has been deflected to be in the off state by the plurality of first deflectors, and a current detector, arranged at the blanking aperture member, to detect a current value of all beams in the on state in the multiple beams that have been deflected by the second deflector.
Abstract:
An ion beam apparatus includes an ion source configured to emit an ion beam, a condenser lens electrode that condenses the ion beam, and a condenser lens power source configured to apply a voltage to the condenser lens electrode. A storage portion stores a first voltage value, a second voltage value, a third voltage value, and a fourth voltage value. A control portion retrieves the third voltage value from the storage portion and sets the retrieved third voltage value to the condenser lens power source when an observation mode is switched to a wide-range observation mode, and retrieves the fourth voltage value from the storage portion and sets the retrieved fourth voltage value to the condenser lens power source when a processing mode is switched to the wide-range observation mode.
Abstract:
A vertical profile, a horizontal profile, and an integrated current value of an ion beam are measured by a plurality of stationary beam measuring instruments and a movable or stationary beam measuring device. At a beam current adjustment stage before ion implantation, a control device simultaneously performs at least one of adjustment of a beam current to a preset value of the beam current, adjustment of a horizontal beam size that is necessary to secure uniformity of the horizontal ion beam density, and adjustment of a vertical beam size that is necessary to secure the uniformity of the vertical ion implantation distribution on the basis of a measurement value of the stationary beam measuring instruments and the movable or stationary beam measuring device.