Abstract:
An ammonia storage cartridge includes an ammonia storage member having a storage material capable of absorbing or adsorbing ammonia. The storage member extends along a longitudinal axis. A heating element heats the storage member, and a hermetic tank houses the storage member. A tubular ammonia circulation element is arranged coaxially to the storage member, and includes a first surface at least partially delimiting, with an element chosen from among the heating element and the hermetic tank, a circulation duct for the fluid ammonia. A second surface is arranged at least partially in contact with the storage member, and at least one orifice passes radially through, allowing the circulation of fluid between the circulation duct and the storage member.
Abstract:
A device for storing and supplying ammonia to an exhaust line of an automobile vehicle, includes a solid material provided for absorbing the ammonia, a reservoir for storing the solid material, and a heating unit to heat the solid material to desorb the ammonia. The solid material comprises solid elements with a mass of less than 50 grams. The heating unit is insulated from the reservoir. The device also includes a first assembly for transferring solid elements from the reservoir to the heating unit.
Abstract:
A method for manufacturing an ammonia storage cartridge includes a step for supplying a material by ammonia absorption or adsorption by absorbent salts, a step for producing an intermediate element, including compacting the materials to form the intermediate element, a step for stacking at least two intermediate elements in a shell of the cartridge, and a step for compressing the stack of intermediate elements in the shell.
Abstract:
An exhaust gas purifying member comprises a housing an exhaust gas purification block placed in the housing, and an exhaust gas purification block-retaining element inserted in an annular space between the housing and the block. The retaining element is, during manufacture of the member, made from a material including at least one nonfunctional component intended to disappear after a characteristic period of using the member. A method of manufacturing the member comprises assembling the housing, the retaining element, and the exhaust gas purification block to obtain a housing whereof a diameter is equal to a predetermined diameter, and with the installation density of the retaining element being equal to a target installation density after the characteristic usage period of the member.
Abstract:
An assembly provides a proportioned gas flow and includes a device that provides a pressurized flow of said gas, a release unit that releases the proportioned gas flow, and a chamber having an inlet fluidically connected to the device and an outlet fluidically connected to the release unit. The assembly further includes an admission valve inserted between the inlet of the chamber and the device, a metering valve inserted between the outlet of the chamber and the release unit, and a computer programmed to control the admission valve and the metering valve to provide a proportioned gas flow to the release unit. The assembly further comprises a calibrated orifice inserted between the outlet of the chamber and the release unit.
Abstract:
A method for manufacturing a member for purifying exhaust gas for an automobile exhaust line, including an enclosure, an exhaust gas purification unit arranged in the enclosure, and at least one element for supporting the unit. The method includes the following steps: obtaining a first quantity representative of a mass (Mb) of the exhaust gas purification unit; using at least the first quantity obtained, determining an installation density (dmounted) of the or each support element; determining at least one diameter (Denclosure) of the enclosure as a function of the determined installation density (dmounted); assembling the enclosure, the support element(s) and the gas purification unit, so as to obtain the diameter that was determined for the enclosure and the installation density (dmounted) that was determined for the support element(s).
Abstract:
An exhaust volume for combustion gases from a motor vehicle engine comprises at least one exhaust duct delimited by a wall comprising an end segment, and at least one flange having a bearing surface. The flange delimits at least one exhaust gas inlet communicating with the exhaust duct. The exhaust gas inlet is delimited by a cannon connected to the flange, with the cannon being attached to the end segment. At least one outer neck is attached to the end segment. The end segment is arranged between the flange and the outer neck, with the end segment being pierced with at least one hole between the flange and the outer neck. The end segment, the flange, and the outer neck are being secured through the addition of a filler.
Abstract:
This exhaust manifold comprises: an outer envelope comprising: at least one flange connected to the outer shell and having at least one gas circulation port, the outer envelope having at least one gas circulation port; at least one internal duct (31) arranged inside the outer envelope and opening via a gas circulation port, characterized in that: the or each internal duct (31) is formed, at least for the most part of its length, of a ceramic material and is engaged through the or each port; and it comprises an annular diaphragm (34) that is impermeable to the gases but radially and axially elastically deformable and positioned around the or each internal duct (31), between the or each internal duct (31) and the outer envelope (18), the diaphragm (34) being connected at its periphery to at least one out of the outer envelope (18) and the or each internal duct (20, 31).
Abstract:
This silencer (10) for a motor vehicle exhaust line of the type comprising: a casing (12) internally delimiting an exhaust volume; an exhaust gas inlet (16) opening into the exhaust volume; and an exhaust gas outlet pipe (18) communicating with the exhaust volume and having an outlet orifice (30) to the outside of the silencer (10), is characterized in that the outlet pipe (18) comprises a section (32) pressed against the casing (12), the casing (12) having at least one perforation placing the pressed section (32) in communication with the exhaust volume.
Abstract:
A method for attenuating the low-frequency noise generated at the outlet (18) of an exhaust line (14). A signal representing the noise to be attenuated is defined; a first high-frequency acoustic wave (F1) is emitted from a first transducer (22) into an attenuation region (26) of the exhaust line (14), the first acoustic wave having a carrier frequency higher than 50 kHz; and a second high-frequency acoustic wave (F1+Δfcb) is emitted by a second transducer (24) into the attenuation region (26) of the exhaust line, the second acoustic wave having the carrier frequency of the first high-frequency acoustic wave (F1) and containing a low-frequency counter-noise signal (Δfcb) which is out of phase with the signal representing the noise to be attenuated.