Abstract:
A device for interventions within the body, the device comprising: an end piece 6 for insertion into the body at a distal end thereof, the end piece 6 including a rigid lumen for holding an instrument 10 and guiding the instrument 10 to the distal end of the end piece; and a body section 4 supporting the lumen and being rigidly connected thereto, the body section including a navigation array 14 for guidance of the device using a surgical navigation system and/or including an anchor point 20 for a standard navigation array.
Abstract:
A device for interventions within the body, the device comprising: an end piece 6 for insertion into the body at a distal end thereof, the end piece 6 including a rigid lumen for holding an instrument 10 and guiding the instrument 10 to the distal end of the end piece; and a body section 4 supporting the lumen and being rigidly connected thereto, the body section including a navigation array 14 for guidance of the device using a surgical navigation system and/or including an anchor point 20 for a standard navigation array.
Abstract:
The present invention provides an agent, or a composition containing an agent, for use in treating or preventing a bacterial infection in a subject, wherein said agent comprises: (i) an oligopeptidic compound comprising a PCNA interacting motif and a domain that facilitates the cellular uptake of said compound, wherein the PCNA interacting motif is X1X2X3X4X5X6 (SEQ ID NO: 1) and wherein: X1 is a basic amino acid; X2 is an aromatic amino acid; X3 is an aromatic amino acid or a hydrophobic amino acid that has an R group comprising at least three carbon atoms; X4 is an uncharged amino acid other than an aromatic amino acid, Glycine (G) and Proline (P); X5 is any amino acid other than an acidic amino acid or an aromatic amino acid; and X6 is any amino acid other than an acidic amino acid or an aromatic amino acid, preferably a basic amino acid or Proline (P), wherein when X3 is not an aromatic amino acid, X5 is not lysine (K) and X6 is a basic amino acid or Proline (P); or (ii) a nucleic acid molecule comprising a sequence encoding the oligopeptidic compound of (i). In certain aspects the agent and composition of the invention may be used as single agents. In other aspects of the invention the agents and composition may be used in conjunction with one or more addition active agents, such as antibiotics, or in combination with UV radiation.
Abstract:
A composition of matter comprising a film on a graphitic substrate, said film having been grown epitaxially on said substrate, wherein said film comprises at least one group III-V compound or at least one group II-VI compound.
Abstract:
A composition of matter, in particular a photovoltaic cell, comprising: at least one core semiconductor nanowire on a graphitic substrate, said at least one core nanowire having been grown epitaxially on said substrate wherein said nanowire comprises at least one group III-V compound or at least one group II-VI compound or at least one group IV element; a semiconductor shell surrounding said core nanowire, said shell comprising at least one group III-V compound or at least one group II-VI compound or at least one group IV element such that said core nanowire and said shell form a n-type semiconductor and a p-type semiconductor respectively or vice versa; and an outer conducting coating surrounding said shell which forms an electrode contact.
Abstract:
To determine properties of multiple oil and gas wells, oscillations at different test frequencies are applied to the flow rate and/or pressure of multiple wells. Measurements of flow rate and/or pressure and temperature in flows downstream of a production header of the multiple wells are then obtained. Such measurements from the flows of the multiple wells are subjected to a frequency analysis of the pressure, flow rate and/or temperature measurements to determine pressure, flow rate and/or temperature variations induced by the applied oscillations. Properties of the different wells of the multiple wells based on the results of the frequency analysis are thus determined.
Abstract:
Disclosed herein is a method of generating a generator matrix for defining how to systematically code source data, the method comprising: determining source nodes for comprising a plurality of sub-stripes of source data, wherein the number of source nodes is K and the number of sub-stripes of source data comprised by each source node is S; determining redundant nodes for comprising a plurality of sub-stripes of coded data, wherein the number of redundant nodes is R and the number of sub-stripes of coded data comprised by each redundant node is S; determining values of a first generator matrix according to a systematic coding technique such that K of the rows of the generator matrix to define how to generate all of the K source nodes as comprising source data and R of the rows of the first generator matrix define how to generate all of the R redundant nodes as comprising combinations of two or more of the source nodes; generating a second generator matrix, with a first dimension (K×S) and a second dimension ((K+R)×S), in dependence on the determined first generator matrix, wherein each value of the second generator matrix defines how to generate the data comprised by a respective sub-stripe of a node defined by the first generator matrix such that the values of the second generator matrix define how to generate all of the sub-stripes of all of the nodes defined by the first generator matrix; and changing one or more of the values of the second generator matrix so that a sub-stripe of at least one of the redundant nodes is defined, by the systematic coding technique, as being dependent on a combination of two or more sub-stripes of data in the source nodes and is further defined as being dependent on one or more further sub-stripes of data, in a respective one or more source nodes, that the sub-stripe of the redundant node was not defined as being dependent on by the systematic coding technique. Advantageously, when the second generator matrix is used to generate erasure coded data in a data storage system, the amount of data that needs to be obtained to reconstruct a lost data node is less than if Reed-Solomon or other known coding techniques had been used.
Abstract:
Methods and devices are described for estimating blood flow characteristics through an orifice of a subject, such as regurgitant blood flow through a faulty heart valve. Acoustical techniques can be applied to send bursts of energy, such as high repetition pulsed ultrasonic signals, to a sample volume in a region of interest. For example, multiple beams can be formed from the bursts of energy each having a cross sectional area that is smaller than the cross sectional area of the orifice being investigated. By combining the multiple beams, a composite measure of the blood flow characteristics through the orifice can be obtained. In one example, the composite measure can provide an estimate of the cross sectional area of the interrogated orifice. The composite measure can also provide an estimate of the geometry of the orifice. Systems and components for providing such composite measures are also disclosed.