Abstract:
An electrostatic precipitator has a high voltage electrode including multiple wire segments that are positioned within, a surrounding electrically conductive porous media having a central axis and wherein the electrode assembly extends along the central axis. The electrode assembly has a plurality of wire lengths positioned to extend in a direction along the longitudinal axis of the porous media, and the wire segments being arranged to have a substantially longer total length than the length of extension along the longitudinal axis. An aerosol containing droplets is passed into the interior of the porous media, and across the electrode, which is charged with a high voltage. The porous media is at a substantially lower or different voltage from the high voltage electrodes. Flow of the aerosol containing particles charged by the electrode passes through the porous media to the outlet and the charged particles are precipitated by the porous media. Electrostatic shields are provided around high voltage insulators to reduce the likelihood of contamination of the insulators, which causes unsatisfactory current leakage.
Abstract:
A dehumidifier uses high voltage to cause moisture to condense out of an airflow in contact with a series of needles and a screen forming the cathode and anode respectively of a diode structure. Condensate is sucked into small holes in either or both of the needles and/or the screen by a vacuum. Ultra-violet light is applied to reduce the incidence of ozone.
Abstract:
An electrostatic precipitator has a high voltage electrode including multiple wire segments that are positioned within a surrounding electrically conductive porous media having a central axis and wherein the electrode assembly extends along the central axis. The electrode assembly has a plurality of wire lengths positioned to extend in a direction along the longitudinal axis of the porous media, and the wire segments being arranged to have a substantially longer total length than the length of extension along the longitudinal axis. An aerosol containing droplets is passed into the interior of the porous media, and across the electrode, which is charged with a high voltage. The porous media is at a substantially lower or different voltage from the high voltage electrodes. Flow of the aerosol containing particles charged by the electrode passes through the porous media to the outlet and the charged particles are precipitated by the porous media. Electrostatic shields are provided around high voltage insulators to reduce the likelihood of contamination of the insulators, which causes unsatisfactory current leakage.
Abstract:
An air filter assembly includes an ion source positioned adjacent to the front face of an air filter to inject ions into the arriving air flow. The ions penetrate upstream sufficiently far to have ionized the air and charge particles before their arrival at the filter trapping medium. The ion source is preferably sufficiently thin as to allow the filter with the ion source mounted thereon to be inserted into a filter slot in a duct of an air handling unit.
Abstract:
A gasification system for solid wastes having a thermal reactor and a mechanical gas cleaner, an indirect heat exchange cooler, and an electrostatic precipitator for cleaning and cooling the produced gas. Feed material is continuously fed to the central section of the thermal reactor above an air introduction manifold and nozzles and in an upward direction, forming a stratified charge. As feed material moves upward and outward from the reactor center it is reduced to ash. An agitator assures contact between the hot particulate product and hot gases resulting in gasification of the feed material and net movement to the sidewall of the thermal reactor, forming ash. The air introduction nozzles serve as a grate. Ash descends along the sidewall to the reactor base for removal. The mechanical cleaner has a high speed rotating brush-like gas separator element and scraper combination which removes condensed tars and particulates from the produced gas stream. The device is self cleaning in that condensed tars and particulates agglomerate on the high speed rotating bristle elements and, upon reaching adequate size and mass, are thrown off by centrifugal force to the cylindrical sidewall, where scrapers remove accumulated material which falls to the separator base for removal. An electrostatic precipitator having a cylindrical brush-like electrode suspended from one end by an insulated arm, removes remaining particles or aerosols from the product gas.
Abstract:
A gasification system for solid wastes having a thermal reactor and a mechanical gas cleaner, an indirect heat exchange cooler, and an electrostatic precipitator for cleaning and cooling the produced gas. Feed material is continuously fed to the central section of the thermal reactor above an air introduction manifold and nozzles and in an upward direction, forming a stratified charge. As feed material moves upward and outward from the reactor center it is reduced to ash. An agitator assures contact between the hot particulate product and hot gases resulting in gasification of the feed material and net movement to the sidewall of the thermal reactor, forming ash. The air introduction nozzles serve as a grate. Ash descends along the sidewall to the reactor base for removal. The mechanical cleaner has a high speed rotating brush-like gas separator element and scraper combination which removes condensed tars and particulates from the produced gas stream. The device is self cleaning in that condensed tars and particulates agglomerate on the high speed rotating bristle elements and, upon reaching adequate size and mass, are thrown off by centrifugal force to the cylindrical sidewall, where scrapers remove accumulated material which falls to the separator base for removal. An electrostatic precipitator having a cylindrical brush-like electrode suspended from one end by an insulated arm, removes remaining particles or aerosols from the product gas.
Abstract:
Device for the precipitation of carbon particles present in exhaust gases having a voltage generator whose poles are connected with at least one electrode and the shell comprising separate internal zones where the following phenomena take place mixing of exhaust gas with air in a first zone, ionization in a second zone of the gas & air mixture coming from said first zone, ignition and precipitation in a third zone of said carbon particles present in said gas & air mixture coming from said second zone, and exhaust of the gas in which said carbon particles have been precipitated.
Abstract:
An electrostatic precipitator assembly is disclosed. The assembly includes a tubular collector and an electrode suspended therein. The electrode includes a substantially cylindrical collector portion and a charging portion which includes a rod and a charging disk, wherein the gap between the charging disk and the collector is at least as great as the gap between the collector portion of the electrode and the collector.
Abstract:
In an assembly incorporating a suspension device and a rapping mechanism for vertically mounted electrodes of a high-voltage supplied electrostatic precipitator, discharge electrodes (9) are suspended from horizontal frame tubes (8'), which are in turn connected to vertical frame tubes (5) having an upper, rod-shaped portion (12). The portion (12) of each of the frame tubes (5) is mounted in vertically aligned holes (14) in the legs of U-shaped support irons (4) attached to the carrier beams (1), which are in turn suspended from the roof of the precipitator housing via carrier rods (3). The upward facing end surface of the portion (12) serves as an abutment for a drop hammer (13) which causes rapping of the electrodes.
Abstract:
A device for removing soot particles from exhaust gas of an internal combustion engine includes an electrical filter having a tubular housing and a central electrode in the form of a cylindrical shell coaxially arranged in the filter housing. The cylindrical shell is supported at its ends by insulators and is provided with a plurality of juxtaposed discharge points. The wall thickness of the cylindrical shell is about 0.05 mm and the discharge points are cut out in the wall of the cylindrical shell and being bent in radial direction toward the inner wall of the filter housing. The sides of the segments connecting the discharge points are oriented in the direction of the center axis of the electrode.