Abstract:
A color-forming composition contains (A) a radical generator, (B) a compound represented by the following formula (1) and (C) a binder polymer: wherein, in the formula (1), R1 represents a group which reacts with a radical generated from the radical generator (A) to be released and forms a dye after the release, and T represents a nitrogen-containing hetero ring.
Abstract:
A lithographic printing plate precursor in a positive-type with an infrared-sensitivity, having a support and an image recording layer provided on the support, the support having a hydrophilic surface, the recording layer having a particular resin, an amphoteric surfactant and/or an anionic surfactant, and an infrared absorbing agent, wherein the particular resin being at least one of resins selected from the group consisting of a polyurethane resin, a poly(vinyl acetal) resin, and maleimide resin A.
Abstract:
A thermal lithographic printing plate overcoat composition comprising (a) a water-soluble polymeric dye having an absorption band between about 300 and about 600 nm; and (b) micro-particles or nano-particles is provided. A negative-working thermal lithographic printing plate comprising (a) a hydrophilic substrate; (b) a near infrared imaging layer disposed on the hydrophilic substrate; and (c) an overcoat layer disposed on the imaging layer, said overcoat layer comprising a water-soluble polymeric dye having an absorption band between about 300 and about 600 nm; and micro-particles or nano-particles is also provided. Finally, a water-soluble polymeric dye having an absorption band between about 300 and about 600 nm is provided.
Abstract:
Negative-working imageable elements such as lithographic printing plate precursors, include a free-radically polymerizable component, an initiator composition that is capable of generating free radicals sufficient to initiate polymerization of the free-radically polymerizable component upon exposure to imaging radiation in the presence of a radiation absorbing compound, a radiation absorbing compound, an aerobic free radical inhibitor, optionally a polymeric binder that is not a free radically polymerizable component, and an anaerobic free radical inhibitor. The molar ratio of the anaerobic free radical inhibitor to the aerobic free radical inhibitor is at least 1:1. This combination of inhibitors provides increased shelf life and good latent image stability particularly when the element includes a polymeric topcoat layer that functions as an oxygen barrier.
Abstract:
A lithographic printing plate precursor in a positive-type with an infrared-sensitivity, having a support and an image recording layer provided on the support, the support having a hydrophilic surface, the recording layer having a particular resin, an amphoteric surfactant and/or an anionic surfactant, and an infrared absorbing agent, wherein the particular resin being at least one of resins selected from the group consisting of a polyurethane resin, a poly (vinyl acetal) resin, and maleimide resin A.
Abstract:
A thermal positive-type planographic original printing plate comprising a support and at least one recording layer provided on the support, either the same layer or different layers of the recording layer comprising: a star polymer in which at least 3 polymer chains bind to a core comprised atomic groups and are radially branching; and an infrared absorbing agent.
Abstract:
A lithographic printing plate precursor includes, in the following order: a support; an image-recording layer which is capable of forming an image by removing an unexposed area of the image-recording layer with at least one of printing ink and dampening water on a printing machine after exposure and contains an infrared absorbing dye, a polymerization initiator, a polymerizable compound and a binder polymer having an alkylene oxide group; and a protective layer containing a hydrophilic polymer which contains at least a repeating unit represented by the formula (1) as defined herein, a repeating unit represented by the formula (2) as defined herein, and a repeating unit represented by the formula (4) as defined herein, and in which a content of the repeating unit represented by the formula (4) is from 0.3 to 5.0% by mole based on total repeating units of the hydrophilic polymer.
Abstract:
The invention is directed to a lithographic printing plate precursor including, in the following order: a support; an image-recording layer containing a radical polymerizable compound and a radical polymerization initiator; and a protective layer containing a star polymer, and the star polymer is preferably a polymer in which from 3 to 10 polymer chains are branched from a central skeleton.
Abstract:
The invention provides a planographic printing plate precursor comprising: a hydrophilic support; and an image recording layer that is provided on the support, the image recording layer comprising: an infrared ray absorbing agent (A); a polymerization initiator (B); a polymerizable monomer (C); and a specific polymer compound (D) having an alkyleneoxy group in its molecule and having, in a side chain thereof at least one specific group. The invention further provides a printing method using the planographic printing plate precursor, wherein no specific development process is required for performing printing.
Abstract:
A lithographic printing plate precursor which is capable of undergoing on-press development by supplying at least one of printing ink and dampening water and includes a support and an image-recording layer, wherein the image-recording layer contains at least one of compounds represented by the formulae (1) to (3) as defined herein.