Abstract:
The present invention relates to polymers comprising one or more (repeating) unit(s) of the formula (I) which are characterized in that Ar1 and Ar1′ are independently of each other are an annulated (aromatic) heterocyclic ring system, containing at least one thiophene ring, which may be optionally substituted by one, or more groups, and their use as organic semiconductor in organic devices, especially in organic photovoltaics (solar cells) and photodiodes, or in a device containing a diode and/or an organic field effect transistor. The polymers according to the invention have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in organic field effect transistors, organic photovoltaics (solar cells) and photodiodes.
Abstract:
A polymer containing an optionally substituted repeat unit of formula (I) wherein each R is the same or different and represents H or an electron withdrawing group, and each R1 is the same or different and represents a substituent.
Abstract:
The present invention provides a macromolecular compound by which the short-circuit current density and the photoelectric conversion efficiency are enhanced when the macromolecular compound is used in an organic layer contained in a photovoltaic cell. Specifically, the present invention provides a macromolecular compound having a structural unit represented by Formula (1): wherein Ar1 and Ar2 are the same as or different from each other and represent a trivalent heterocyclic group; X1 represents —O—, —S—, —C(═O)—, —S(═O)—, —SO2—, —Si(R3)(R4)—, —N(R5)—, —B(R6)—, —P(R7)—, or —P(═O)(R8)—; and R51 represents an alkyl group having 6 or more carbon atoms, an alkyloxy group having 6 or more carbon atoms, an alkylthio group having 6 or more carbon atoms, an aryl group having 6 or more carbon atoms, an aryloxy group having 6 or more carbon atoms, an arylthio group having 6 or more carbon atoms, an arylalkyl group having 7 or more carbon atoms, an arylalkyloxy group having 7 or more carbon atoms, an arylalkylthio group having 7 or more carbon atoms, an acyl group having 6 or more carbon atoms, or an acyloxy group having 6 or more carbon atoms.
Abstract:
The invention relates to conducting and semi-conducting photoreactive compounds, represented by the general formula (I), to the use of these compounds for the preparation of oriented and/or orientation layers; and to their use in the construction of unstructured and structured optical, electro optical or optoelectronic elements and multi-layer systems.
Abstract:
The invention relates to the field of polymers and olefin polymerization, and more specifically olefin metathesis polymerization. The invention provides regioregular alternating polymers and methods of synthesizing such polymers. To demonstrate, polymers were synthesized and modified with a FRET pair (Trp/Dansyl) post-polymerization.
Abstract:
An OLED comprising a hole-transporting layer and light-emitting layer wherein the hole-transporting layer comprises a hole-transporting polymer wherein no more than 5% of the polystyrene equivalent polymer weight measured by gel permeation chromatography consists of chains with weight of less than 50,000.
Abstract:
Composition having an organic semiconducting material and a triplet-accepting material of formula (I) with a triplet energy level lower than the triplet energy level of the organic semiconducting material, in which each Ar is optionally substituted aryl or heteroaryl group, n is 1-3, m is 1-5, q is 0 or 1, each R3 is H or a substituent, and each R4 is H or a substituent. Where R4 is not H, R4 and (Ar)m bound to the same carbon atom may be linked by a direct bond or a divalent group. Where n or m is at least 2, adjacent Ar groups may be linked by a divalent group. Where q=0, R3 is not H and is linked to (Ar)n by a direct bond or a divalent group.
Abstract:
A bulk heterojunction-type organic photovoltaic cell, i.e., BHJ solar cell, has a photoelectric conversion layer containing a mixture of a donor domain and an acceptor domain. The donor domain contains a polymer as a donor (photoelectric conversion material), and the polymer is obtained by reaction of a polyphenylene represented by the following general formula (1). For example, the acceptor domain contains phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. At least one of R1 to R6 in the general formula (1) is an alkoxy group, and R7 to R10 independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
Abstract:
The present invention relates to polymers comprising a repeating unit of the formula I, or III and their use as organic semiconductor in organic devices, especially an organic field effect transistor (OFET), or a device containing a diode and/or an organic field effect transistor. The polymers according to the invention have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in organic field effect transistors.
Abstract:
The present invention relates to polymers comprising one or more (repeating) unit(s) of the formula (I), and compounds of formula (III), wherein Y, Y15, Y16 and Y17 are independently of each other a group of formula (A), (B) or (C) and their use as IR absorber, organic semiconductor in organic devices, especially in organic photovoltaics and photodiodes, or in a device containing a diode and/or an organic field effect transistor. The polymers and compounds according to the invention can have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers and compounds according to the invention are used in organic field effect transistors, organic photovoltaics and photodiodes.