Abstract:
On piston shoes in radial piston pumps, motors and engines the radial load which is excerted by the pressure under the piston onto the piston shoe is to a high rate borne by hydrostatic bearings between the piston shoe and the inner guide face of the piston stroke actuator ring. At high revolutions per given time the centrifugal forces appearing from the masses of piston and shoe increase drastically which results therein, that the bearing capacity of the hydrostatic bearing fails to bear the increased load. The invention gives rules how additional hydrodynamic bearing portions can become provided on the outer portions of the piston shoes, whereby those portions will carry an additional load by hydrodynamic actions. Since the bearing capacity of such bearing portions increases with increase of the rotary speed of the device, the applicable range of revolutions per minute can be increased by the application of the invention.
Abstract:
An integrally cast composite piston assembly is disclosed which is effective to carry a ceramic plate in an iron based cap. The assembly comprises a cylindrical piston body, preferably of aluminum, having a crown top, an annular crown side wall with an upper edge, and an annular undercut surface terminating the crown side wall. The undercut surface must make an angle with a plane extending perpendicular to the axis of the piston, the angle being substantially equal to the arc tangent of H/R where H is the median distance of the undercut surface from the plane and R is the median radius of the undercut surface from the axis of the piston. The assembly further comprises the cylindrical iron-based cap disposed on the piston body crown top and having a cap side wall depending about the crown side wall, the cap side wall having an annular lip extending radially inwardly from the cap side wall, the lip having a surface mateable with the undercut surface of the piston body so that there exists a tightly stressed camming relationship between the mateable surfaces as a result of the shrinkage of the piston body upon solidification.
Abstract:
Disclosed herein is an internal combustion engine piston comprising a piston cap formed from a plurality of ceramic pieces, and a metal piston body, the piston cap being fixed to the top portion of the metal piston body, wherein the piston cap is made of one or more types of ceramic materials, and the ceramic pieces constituting the ceramic cap and the metal piston body are bonded together through a metallized layer coated onto the ceramic pieces and a metal-plated layer coated onto the metallized layer in such a manner that the bonding area between the ceramic piece or pieces and the metal piston body may be larger at a top central portion of the metal piston body than that between the ceramic piece or pieces and the metal piston body at another portion thereof. Also disclosed is a method of producing the same.
Abstract:
A method for constructing and breaking in piston engines includes applying an integral phosphate layer to the interior cylinder wall prior to the insertion of the piston into a cylinder. The invention includes the improved engine so constructed. The phosphate layer decreases oil consumption and improves piston ring seating in such an engine. The phosphatizing solution includes a zinc or manganese salt in phosphoric acid at a pH between about 2.5 and 4.
Abstract:
This invention discloses a thermally insulated piston having a cap portion and a body portion. The cap can be made of metal or ceramic. The cap and body portion are joined together by a brazing alloy. The cap portion can have a groove for receiving the brazing alloy. The ceramic cap can have a retaining band portion in a retaining band groove the band being bonded to the body portion by a brazing alloy. The piston with the ceramic cap can have an interlayer between the cap and body portion, the interlayer being bonded to the cap portion and body portion by a brazing alloy. The interlayer can have an outer knife edge. The body portion has a machined groove adjacent to the cap portion comprised of cells filled with thermal insulating material.
Abstract:
The reinforcement of the crown of a piston of aluminum or aluminum alloy for an internal combustion engine comprises the preparation of a reinforcement member (10, 13) which is provided with apertures (11, 14), or reentrants. The reinforcement member is placed in a crown-forming part (18) of a piston die in a squeeze casting apparatus and the piston is squeeze cast. The molten metal penetrates the apertures, or enters the reentrants, and these are so shaped that when the molten metal has solidified, keys are formed which connect securely the reinforcement member to the aluminum or aluminum alloy. Further reinforcement members can then be readily brazed or welded to the first reinforcement member.
Abstract:
A composite piston structure and a method of making same is disclosed. A piston member, carrier member, and ceramic facing member are formed, the piston member being comprised of a material selected from plastic and metal having a density of less than 0.15 lb/in.sup.3, the ceramic facing member, preferably comprised of a material selected from zirconia and aluminia, and carrier member preferably comprised of a material selected from stainless steel and cast iron. The carrier member material has a coefficient of thermal expansion differing from the coefficient of thermal expansion of the ceramic by up to 2.0.times.10.sup.-6 in/in/.degree.F. An annular grooved wall is defined in the side surface of the piston member and disposed at a location radially opposite a portion of the carrier member when the latter is wrapped about the top of the piston member. A high energy beam is directed across a zone of the carrier member that is radially aligned with the grooved wall and deployed to melt a portion of the carrier member intersected by the beam, causing the melted material to flow into the grooved wall to fill same and lock the piston member to the carrier member, upon solidification, for conjoint movement.
Abstract:
A method of assembling a piston, connecting rod, wrist pin, and yoke thrust bearing is disclosed wherein the method comprises the steps of disposing between the piston and connecting rod, a one-piece yoke thrust bearing thereby providing a bearing surface between a wrist pin boss and the connecting rod. The piston includes a pair of wrist pin bosses disposed therein and in spaced-apart facing relationship. The bosses have oppositely disposed faces with axially aligned bores therein, and the faces have disposed therein respective shoulder-like depressions. The yoke thrust bearing comprises a pair of washer portions in abutment against respective boss faces and interconnected by a yoke element, and the washer portions have respective projections conformably received in respective depressions, thereby aligning the holes in the washers with the bores and preventing rotation of the yoke thrust bearing in the piston. One end of the connecting rod is received between the washer portions, and a wrist pin is passed through the boss bores, washer portions, and the connecting rod opening to thereby pivotally connect the piston and connecting rod together.
Abstract:
In hydrostatic pumps, motors and transmissions; faces, which slide and seal along adjacent faces, commonly have recesses for hydrostatic lubrication or for control of flow through ports.The invention provides additional arrangements on such faces for the provision of additional functions, for example, for the control of hydrodynamic flow into spaces between faces, the control of an additional control flow through the faces and the sealing therof or it provides recesses or seal inserts of specific locations or configurations for the improvement of the efficiency of the faces or for assurance of additional actions by the faces.
Abstract:
A piston for an internal combustion engine is provided with a crown portion heat insulated from the remainder of the piston over all or substantially all of the area of the crown, to reduce the transfer of heat from the crown to the remainder of the piston. The insulation may be by a chamber extending across the piston and the chamber may contain a vacuum. Such a piston can be manufactured by a process involving roll-bonding aluminum or an aluminum alloy to a ferrous material in order to secure a crown of ferrous material to the remainder of the piston made from aluminum or aluminum alloy.