Abstract:
An unsintered metal fiber burner is produced by mixing ceramic fibers with the metal fibers and binding the mixed metal-ceramic fibers together as a porous layer adherent to a foraminous support. By mixing ceramic fibers with metal fibers, the cost of a sintered metal fiber burner is reduced while the novel burner, because of the metal fiber therein, exhibits improved properties such as greater radiant efficiency, lower NO.sub.x emissions and increased durability.
Abstract:
The invention relates to a cooking assembly for a cooker or a cooking top, the assembly including a cooking plate (1) and at least one gas burner (100) enabling a receptacle to be heated, said cooking plate including an opening (4) associated with said burner to enable the burner to act directly. According to the invention, at least one of the gas burners (100) is a radiant burner having a metal fiber structure, with its top face (101) being essentially plane and flush with the top surface (P) of the cooking plate (1), said radiant burner (100) being organized so as to close the associated opening (4). The invention is applicable to cooking assemblies for cookers or cooking tops having a cooking plate made of vitroceramic, of molded glass, or of agglomerated inorganic fibers.
Abstract:
A burner includes a base and a combustion tray, wherein the base has an inlet pipe and two horn-shaped tubes. The horn-shaped tubes are connected to opposite sides of the inlet pipe, wherein each of the horn-shaped tubes respectively has a first section. A length of the first sections is no less than an inner diameter of the inlet pipe at where the horn-shaped tubes are connected to. The combustion tray is engaged with the base, and communicates with the horn-shaped tubes. Whereby, gas and air could be fully mixed while flowing through each of the first sections. The symmetrical horn-shaped tubes could direct the airflow to the combustion tray, where the airflow could be outputted from flame vents of the combustion tray, whereby to generate more even flame, and to enhance the heating efficiency.
Abstract:
A radiant burner and method are disclosed. The radiant burner is for treating an effluent gas stream from a manufacturing process tool, the radiant burner comprises: a sintered metal fibre sleeve through which combustion materials pass for combustion proximate to an inner combustion surface of the sintered metal fibre sleeve; and an insulating sleeve surrounding the sintered metal to fibre sleeve and through which the combustion materials pass. In this way, a radiant burner is provided which does not crack due to rapid cycling caused by frequent idle steps during which the burner is extinguished. Also, by providing an insulating sleeve, the temperature within the radiant burner and the temperature of an outer surface of the radiant burner remain comparable with existing ceramic burners. This enables the radiant burner to be substituted in place of existing ceramic burners as a line-replaceable unit which does not suffer from cracking during such frequent and short-duration periods of process tool inactivity.
Abstract:
A burner system for a furnace. The system may have a wedged or other shaped burner box. An air-fuel mixer may be attached to a smaller end of the burner box at virtually any angle relative to a direction of a gas and air mixture leaving the larger box end. A burner head may be attached to the larger end of the box. The burner head may be sufficient for numerous heater sections of a heat exchanger. A spacer and a radiation shield may be situated between the burner head and heat exchanger. An addition of the radiation shield may reduce the operating temperature of the burner box, burner head and/or spacer. A fan may move the gas and air mixture from the mixer, through the box and the burner head. The mixture may be ignited into a flame which is moved into the heat exchanger.
Abstract:
The invention relates to a production method for a burner fabric membrane (1) consisting of special steel fabric layers for burning fuel/air mixtures. Additional passages (4) in the fabric (8) are produced by the displacement of the fabric and the mouths of the passages protrude from the membrane surface (3).
Abstract:
A surface burner for gas combustion has a burner surface which is fabricated by intertwining or interweaving an elongated flexible element across a distinct burner frame. This fabrication method can be best referred to as braiding, but also plaiting, lacing or another comparable method.
Abstract:
The present invention relates to a cooking top (1), in particular adapted to be used in a household environment, comprising at least one gas burner (40) which can be used with at least one fuel gas. The cooking top also comprises flame divider means (9) associated with the gas burner (40) and comprising at least one semi-permeable element (90), which is permeable to gaseous substances and substantially impermeable to liquid substances. The semi-permeable element (90) may be a micro-perforated sheet, a fibrous membrane, or a porous membrane.
Abstract:
The invention relates to a production method for a burner fabric membrane (1) consisting of special steel fabric layers for burning fuel/air mixtures. Additional passages (4) in the fabric (8) are produced by the displacement of the fabric and the mouths of the passages protrude from the membrane surface (3).
Abstract:
The steam methane reformer using a premixed metal fiber burner which has a short flame length as well as a high temperature to thereby provide a high efficiency and also reduce a size, and a hydrogen station having the same. The steam methane reformer using a high performing metal fiber burner comprises a reforming part (110a) in which a catalyst for steam-reforming hydrocarbon materials and producing hydrogen is disposed; a combustion part (120) which is provided with a premixed metal fiber burner (120a) for generating heat required for the steam reforming reaction of the reaction tubes (110a); a raw material supplying part (130) for supplying hydrocarbon materials to the reaction tube (110a); and a hydrogen discharging part (140) for discharging hydrogen produced through the steam reforming reaction by the catalyst of the reaction tube (110a).