Abstract:
A microstructure inspection method which inspects an angle of a sidewall of a sample microstructure pattern, the method including: taking SEM photographs of the sample microstructure pattern under plural SEM conditions; measuring a width of a white band at an edge portion of the sample microstructure pattern in the SEM photographs; and calculating the angle of the sidewall of the sample microstructure pattern on the basis of an amount of change in the width of the white band due to the change between the plural SEM conditions.
Abstract:
The invention provides a nondestructive inspection apparatus and nondestructive inspection method for inspecting the inside of a surface layer of a composite structure using cosmic-ray muons. The nondestructive inspection apparatus is to inspect the inside of the surface layer of a composite structure 11 using cosmic-ray muons 12 incoming substantially in the horizontal direction with being spin polarized by a given amount in the incoming direction, and has positron/electron amount detecting means 13 for detecting a positron/electron amount reflection-emitted having a characteristic time constant in the direction opposite to the incoming direction of the cosmic-ray muons 12 by the decay of the cosmic-ray muons 12 stopping inside the composite structure 11, and radiography data processing means 14, 15, 16 for data-processing a state of the second substance 11-2 different from the first substance 11-1 of the surface layer existing inside the surface layer of the composite structure 11 as radiography to output, from the positron/electron amount detected in the positron/electron detecting means 13.
Abstract:
A line-width measurement adjusting method, which is used when first and second electron beam intensity distributions for measuring a line width are produced from intensity distribution images of secondary electrons obtained respectively by scanning a first irradiation distance with an electron beam at first magnification, and by scanning a second irradiation distance with an electron beam at second magnification, includes the step of adjusting the second electron beam intensity distribution of the electron beam at the second magnification such that the second electron beam intensity distribution is equal to the first electron beam intensity distribution of the electron beam at first magnification. The second electron beam intensity distribution may be adjusted by increasing or decreasing a second irradiation distance when producing the electron beam intensity distribution.
Abstract:
Exemplary systems and methods are provided for imaging a unit under test. Orientation of an imaging system is determined with a machine vision system, a unit under test is scanned with the imaging system, and the scanned image is processed into a substantially distortion-free image. The scanned image may be processed into a substantially distortion-free image by mapping a scanned image to coordinates determined by the machine vision system. By combining the position and orientation information collected at the time each image pixel is collected, the image can be assembled without distortion by mapping a detector signal to the appropriate image coordinate. Alternately, the scanned image may be processed into a substantially distortion-free image by mapping a scanned image to a predetermined matrix grid of coordinates, identifying distortion in the scanned image, and correcting identified distortion in the scanned image.
Abstract:
The invention relates to a coordinate measuring apparatus (110) for measuring an object (3), comprising an x-ray sensory mechanism as a first sensory mechanism that is provided with an x-ray source (10) and at least one x-ray sensor (7) which detects the x-rays, and a second sensory mechanism such as a tactile and/or an optical sensory mechanism (8, 11; 9) that can be placed in the x, y, and/or z direction of the coordinate measuring apparatus in relation to the object. In order to be able to easily measure also large-size test objects, the x-ray sensory mechanism (7, 10) can be positioned in the coordinate measuring apparatus (10) according to the second sensory mechanism (8, 11; 9).
Abstract:
A pattern measurement apparatus includes a line profile creating unit for creating a line profile of a pattern formed on a sample by scanning with a charged particle beam, a derivative profile creating unit for creating a second derivative profile by differentiating twice the line profile, and an edge detecting unit for judging whether an edge in the pattern is a rising edge or a falling edge by use of two peak positions and two peak values appearing in the vicinity of an edge position of the pattern obtained from the second derivative profile. Assuming that the two peak positions appearing in the vicinity of the edge position of the pattern obtained from the second derivative profile are defined as X1 and X2, X2 being larger than X1, the edge detecting-unit judges that the edge is a rising edge when a signal amount in the peak position X1 is larger than a signal amount in the peak position X2.
Abstract:
The invention relates to an apparatus and method for non-contact/non-destructive measurement of the geometry of molded ophthalmic lenses and the precision molds and tooling used in the manufacture of the ophthalmic lenses. In particular the present system uses micro computed tomography to measure the geometries.
Abstract:
The invention relates to a method for matching a first measurement method for measuring structure widths of trapezoidally tapering structures on a substrate wafer to a second measurement method for measuring the structure widths. This is performed in order to obtain measured values for the structure width which are comparable with one another. The second measurement method is suitable for measuring a second structure width at an unknown second height above the surface of the substrate, and the first measurement method is suitable for measuring a first structure width at a first height, the first height being settable.
Abstract:
A method for measuring the fill level of a medium in a container by applying the radar principle, whereby a measuring signal is generated and transmitted in the direction of the medium. A retroreflected portion of the measuring signal is captured and the fill level is determined as a function of the runtime of the measuring signal. The measuring signal is transmitted into multiple mutually different regions and the retroreflected portions of the measuring signal is received at multiple receiving points. In this fashion, it is possible to at least approximate the surface structure of the medium in the container.
Abstract:
The present invention may include a pattern inspection method of extracting a pattern edge shape from an image obtained by a scanning microscope and inspecting the pattern. A control section and a computer of the scanning microscope process the intensity distribution of reflected electrons or secondary electrons, find the distribution of gate lengths in a single gate from data about edge positions, estimate the transistor performance by assuming a finally fabricated transistor to be a parallel connection of a plurality of transistors having various gate lengths, and determine the pattern quality and grade based on an estimated result. In this manner, it is possible to highly, accurately and quickly estimate an effect of edge roughness on the device performance and highly accurately and efficiently inspect patterns in accordance with device specifications.