Abstract:
A DC magnetron sputter reactor for sputtering deposition materials such as tantalum and tantalum nitride, for example, and its method of use, in which self-ionized plasma (SIP) sputtering and capacitively coupled plasma (CCP) sputtering are promoted, either together or alternately, in the same chamber. Also, bottom coverage may be thinned or eliminated by inductively-coupled plasma (ICP) resputtering. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. CCP is provided by a pedestal electrode which capacitively couples RF energy into a plasma. The CCP plasma is preferably enhanced by a magnetic field generated by electromagnetic coils surrounding the pedestal which act to confine the CCP plasma and increase its density.
Abstract:
The present invention provides a bias sputtering film forming process and film forming apparatus that can form a coating film having a good film thickness distribution in a minute coated surface of a complicated shape, such as contact holes, through-holes and wiring grooves, especially for the sidewall portions thereof. To a bias sputtering film forming apparatus provided with a sputtering cathode 4 and a substrate stage 5 holding a target 6 and a substrate 7 facing to each other, respectively, in a vacuum chamber 1 having a sputtering gas inlet 3 and a vacuum exhaust port 2, a power source 9 of a variable output for the substrate stage 5 and a control system 10 are connected. The substrate bias voltage value when the cathode voltage is made set to a predetermined voltage previously, and the target is parted from the substrate by a predetermined distance; and the thickness distribution of the thin film on each surface corresponding to this substrate bias voltage value are stored in the control system 10 as reference data. The substrate bias voltage value to make the film thickness substantially uniform in the film forming of each surface is selected from the reference data to be a bias voltage function that makes this a variable, and the output of the power source is controlled by this function.
Abstract:
An unbalanced magnetron rotatable about the back of a sputtering target and including a nested magnetron part having an outer magnetic pole of a first magnetic polarity surrounding an inner magnetic pole of an opposed second magnetic polarity and an auxiliary magnet increasing the unbalance and adjusting the uniformity of sputtering. In a first embodiment, the auxiliary magnet is vertically magnetized and placed on an opposite side of the rotation axis from the major portion of the nested magnetron part. This embodiment most strongly affects the vertical magnetic field distribution near the wafer and can produce a more uniform magnetic field at the wafer. In a second embodiment, the auxiliary magnet is horizontally magnetized and placed between the inner pole and the portion of the outer pole near the target periphery. This embodiment most strongly affects the sputtering erosion pattern near the target periphery. The two embodiments can be combined.
Abstract:
A magnetron plasma process apparatus comprises a process chamber, an upper electrode and a lower electrode, both located within the process chamber and extending parallel to each other, a gas-supplying system for supplying a process gas into the space between the electrodes, a high-frequency power supply for generating an electric field, to thereby to form plasma from the process gas, and magnetic field generating section for generating a magnetic field which extends through the space between the electrodes. The magnetic field generating section has a pair of permanent magnets located outside the process chamber, sandwiching the space between the electrodes. The magnetic field generated by this section extends through said space, from one of the magnets to the other thereof and substantially parallel to the electrodes, and serves to achieve magnetron plasma process on an object placed on the lower electrode.
Abstract:
An internally cooled target assembly for use in a magnetron sputtering apparatus is provided. The internally cooled target assembly includes a cooling plate that is configured to promote highly turbulent coolant flow through the target assembly to achieve efficient and uniform target cooling. The volume of coolant required to cool the target assembly is minimized.
Abstract:
A magnet assembly may comprise a first magnet plate having a first magnet mounted thereon and a second magnet plate having a second magnet mounted thereon and a third magnet mounted thereon adjacent the second magnet so that a pole axis of the second magnet is substantially perpendicular to a pole axis of the third magnet. The second magnet plate is positioned adjacent the first magnet plate so that a plasma-confining magnetic field is created between the first, second, and third magnets. The first and second magnet plates are also moveable with respect to one another so that they can be moved between a center position configuration and an end position configuration. An actuator operatively associated with the first and second magnet plates moves the first and second magnet plates with respect to one another so that the first and second magnet plates are located at about the center position configuration for a time that is greater than a time that the first and second magnet plates are located at about the end position configuration.
Abstract:
An improved apparatus and method for manufacturing semiconductor devices, and, in particular, for depositing material at the bottom of a contact hole, comprises sputtering a material onto a semiconductor substrate; applying a first bias voltage to the substrate, simultaneously removing the material surrounding the contact hole to form a facet at the top of the recess; and applying a second bias voltage to the substrate, simultaneously sputter-depositing the first material onto the bottom of the recess. A further embodiment of the invention utilizes an electrically isolated collimator for the sputtering apparatus. Another embodiment of the invention resputters a first material onto sidewalls of a contact hole during physical vapor deposition.
Abstract:
A magnetron sputtering source for depositing a material onto a substrate includes a target from which the material is sputtered, a magnet assembly disposed in proximity to the target for confining a plasma at the surface of the target and a drive assembly for scanning the magnet assembly relative to the target. The sputtering source may further include an anode for maintaining substantially constant plasma characteristics as the magnet assembly is scanned relative to the target. The anode may be implemented as variable voltage stationary electrodes positioned at or near the opposite ends of the scan path followed by the magnet assembly, spaced-apart anode wires positioned between the target and the substrate or a movable anode that is scanned with the magnet assembly. The magnet elements of the magnet assembly may have different spacings from the surface of the target to enhance depositional thickness uniformity. The target may be fabricated in sections, each having a target element bonded to a backing element for reduced sensitivity to thermal variations. The target may be rotated from a first fixed position to a second fixed position relative to the magnet assembly at least once during its operating life for increased target utilization.
Abstract:
The structure and method which improves the film thickness uniformity or thickness control when using magnetron sputtering by adjusting the distance between the magnetron or a portion of the magnetron and the sputtering target to provide an improvement in the film thickness uniformity. Shimmed rails, contoured rails, contoured surfaces, cam plates, and cam plate control followers are utilized to achieve an improvement in film thickness uniformity or thickness control due to anomalies in magnetic field as a magnetron assembly moves back and forth when sputtering substrates (utilized primarily for rectangularly shaped substrates).
Abstract:
A sputtering apparatus is equipped with a vacuum enclosure 11, a pumping mechanism 18 that evacuates the interior of the vacuum enclosure, magnetron cathodes 12a and 12b to which are attached targets 14, a gas feed mechanism 19 that feeds sputtering gas, and a substrate transfer mechanism. An electrical discharge is generated in the vicinity of the targets, thereby sputtering the targets, and sputter deposition is performed on substrates 15 that pass by facing onto the target surfaces. The magnetron cathodes are equipped with magnetron magnetic circuits 32, which are able to move, and the magnetron magnetic circuits are equipped with magnetron reciprocating mechanisms 33 including a left-right reciprocating part that reciprocates in the substrate transfer direction, which is parallel to the target surface, and an up-down reciprocating part that reciprocates in a direction perpendicular to the substrate transfer direction.