Abstract:
In one embodiment of the present disclosure, a composite electrode for a battery is provided. The composite electrode includes silver vanadium oxide present in an amount from about 75 weight percent to about 99 weight percent and polypyrrole present in an amount from about 1 weight percent to about 25 weight percent.
Abstract:
An electrode comprising a cast-film architecture wherein a silicon-based polymer precursor is cast on to a current collector directly from the liquid, and processed in-situ to create a high performance anode for lithium ion batteries. In this in-situ process the liquid polymer is cross-linked and pyrolyzed to create a cast-film-anode architecture. The cast-film architecture is distinctly different from the conventional powder-based ex-situ process whereby the polymer precursor is made into powders by a ex-situ process; with these powders being then combined with conducting agents and binders to create a paste which is screen printed on a current collector to produce electrode with a powder-anode architecture. The cast-film architecture obviates the need for conducting agents and binders, simplifying the production process for the anode, without a loss in performance. The energy capacity per unit volume of the anode material is two to ten times greater for the cast architecture.
Abstract:
Described is an electrode material which is suitable for a lithium ion accumulator and comprises a porous metal-organic framework, wherein the framework comprises lithium ions and optionally at least one further metal ion and at least one bidentate organic compound and the at least one bidentate organic compound is based on a dihydroxydicarboxylic acid which can be reversibly oxidized to a quinoid structure. Also described is a porous metalorganic framework, the use thereof and also lithium ion accumulators comprising such electrode materials.
Abstract:
A secondary battery using a polymer radical material and a conducting additive in which the performance of a conductive auxiliary layer is further improved and the internal resistance is reduced, thereby achieving a higher output. Specifically disclosed is a secondary battery in which at least one of a positive electrode and a negative electrode uses, as an electrode active material, a polymer radical material and a conducting additive having electrical conductivity. By providing a conductive auxiliary layer between a current collector and the polymer radical material/conducting additive electrode which is mainly composed of graphite, fibrous carbon or a granular carbon having a DBP absorption of not more than 110 cm3/100 g, the secondary battery with a higher output can be obtained.
Abstract:
Disclosed herein is a cathode active material based on lithium nickel-manganese-cobalt oxide represented by Formula 1, wherein the lithium nickel-manganese-cobalt oxide has a nickel content of at least 40% among overall transition metals and is coated with a conductive polymer at a surface thereof. A lithium secondary battery having the disclosed cathode active material has advantages of not deteriorating electrical conductivity while enhancing high temperature stability, so as to efficiently provide high charge capacity.
Abstract:
An electricity storage material according to the present invention contains a copolymer compound of first units and second units, each first unit having a side chain which is an oxidation-reduction site having a it conjugate electron cloud and being of a structure represented by general formula (1) below, and each second unit having no oxidation-reduction reaction site as a side chain. In general formula (1), X1 to X4 are, independently, a sulfur atom, an oxygen atom, a selenium atom, or a tellurium atom; R1 and R2 are, independently, an acyclic or cyclic aliphatic group including at least one kind selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, a phosphorus atom, and a boron atom, each including at least one or more double bonds; and one of R1 and R2 includes a bonding hand for binding to another portion which is a main chain or a side chain of the copolymer compound.
Abstract translation:根据本发明的蓄电材料包含第一单元和第二单元的共聚物化合物,每个第一单元具有侧链,其是具有共轭电子云的氧化还原位点,并且具有由通式( 1),并且每个第二单元不具有作为侧链的氧化还原反应位点。 在通式(1)中,X 1至X 4独立地为硫原子,氧原子,硒原子或碲原子; R 1和R 2独立地是包括选自碳原子,氧原子,氮原子,硫原子,硅原子,磷原子中的至少一种的无环或环状脂族基,和 硼原子,各自包含至少一个或多个双键; R 1和R 2中的一个包括用于与作为共聚物化合物的主链或侧链的另一部分结合的接合手。
Abstract:
The invention provides an anode comprising a nanocomposite of graphene-oxide and a silicon-based polymer matrix. The anode exhibits a high energy density such as ˜800 mAhg−1 reversible capacity, a superlative power density that exceeds 250 kW/kg, a good stability, and a robust resistance to failure, among others. The anodes can be widely used in a lithium-ion battery, an electric car, a hybrid electromotive car, a mobile phone, and a personal computer etc. The invention also provides a liquid phase process and a solid-state process for making the nanocomposite, both involving in-situ reduction of the graphene-oxide during a pyrolysis procedure.
Abstract:
The present invention can provide new spirooxazine radical derivatives of the following general formula (1) which have chromic property enabling the distinction between the radical species and the cation species on the basis of absorption wavelength:
Abstract:
A phosphorated polymer includes a conductive polymer main-chain and a side-chain connected to the conductive polymer main-chain. The side-chain includes an electrochemically active phosphorated group Pm. A method for making the phosphorated polymer and a lithium-ion battery using the phosphorated polymer is also provided.
Abstract:
Silicon composite particles are prepared by sintering primary fine particles of silicon, silicon alloy or silicon oxide together with an organosilicon compound. Sintering of the organosilicon compound results in a silicon-base inorganic compound which serves as a binder. Each particle has the structure that silicon or silicon alloy fine particles are dispersed in the silicon-base inorganic compound binder, and voids are present within the particle.