Abstract:
A dual gain amplification low noise amplifier that includes an amplification circuit to a provide dual gain amplification—high gain amplification for a weak data signal and low gain amplification for a strong data signal. Also included is a control circuit to maintain approximately the same P1dB point for the weak signal during high gain amplification as for the strong signal during low gain amplification.
Abstract:
Provided is a method and system for producing a drive signal for a current steering amplifier. An exemplary method comprises receiving a supply voltage signal and a differential input signal as a circuit input. A differential amplifier drive signal is produced in response to the received supply voltage signal, the received differential input signal, and the received differential control signal. The received differential input signal is adjusted to a value where magnitudes of negative and positive components of the differential control signal become equal to one another and are within a predetermined amount of a magnitude of the supply voltage signal.
Abstract:
Provided is a system for implementing gain control in an amplification module comprising a first stage amplifier having a number of first stage input and output ports. The first stage amplifier is configured to provide first stage amplification to a received input signal and produce from the amplified input signal a number of output signals. Also included are a number of second stage amplifiers, each having second stage input and output ports, the second stage input ports being respectively coupled to the first stage output ports and being configured to receive the number of output signals. A gain control device is coupled to at least one from the group including the first stage input ports, the first stage output ports, and the second stage output ports. The gain control device is also configured to control a gain of at least one of the first stage amplifier and one or more of the number of second stage amplifiers.
Abstract:
A system is provided for activating gain stages in an amplification module. The system includes an amplification module including a first group of amplifiers. Inverting output ports of each of the first group of amplifiers are coupled to a module inverting output terminal, and non-inverting output ports are coupled to a module non-inverting output terminal. A divider network is provided and is coupled to the input ports of the first group of amplifiers. A second group of amplifiers is also provided. Each amplifier of the second group corresponds to one of the amplifiers in the first group, has an inverting input port coupled to the second module inverting input terminal and to output ports of the divider network, and a non-inverting input port coupled to the second non-inverting input terminal. The inverting output ports of the second group of amplifiers are coupled to the inverting output terminal and non-inverting output ports of the second group of amplifiers are coupled to the non-inverting output terminal.
Abstract:
An electronic circuit comprising an amplifier includes an output terminal (OUT) for supplying an output signal (Vout) to a load, the amplifier comprising an output transistor (N2, P1) having a first main terminal coupled to a supply voltage terminal (VSS, VDD) of the amplifier, a second main terminal coupled to the output terminal (OUT), and a control terminal. In order to avoid that the output transistor (N2, P1) can enter its linear state which would cause the amplifier to act unacceptably slow for some purposes, the electronic circuit further comprises a controller adapted to prevent the output transistor (N2, P1) to enter its linear state whereby the controller is arranged for reducing a control voltage (Vcntrl) between the control terminal and the first main terminal when an output voltage (Vout) between the second main terminal and the first main terminal is below a defined level.
Abstract:
An electronic circuit comprising an amplifier comprising an output terminal (OUT) for supplying an output signal (Vout) to a load, the amplifier comprising an output transistor (N2, P1) having a first main terminal coupled to a supply voltage terminal (Vss, VDD) of the amplifier, a second main terminal coupled to the output terminal (OUT), and a control terminal. In order to avoid that the output transistor (N2, P1) can enter its linear state which would cause the amplifier to act unacceptably slow for some purposes, the electronic circuit further comprises control means for avoiding the output transistor (N2, P1) to enter its linear state whereby the control means are arranged for reducing a control voltage (Vcntrl) between the control terminal and the first main terminal when an output voltage (Vout) between the second main terminal and the first main terminal is below a defined level.
Abstract:
A high-precision biasing circuit is provided for a CMOS cascode stage with inductive load and degeneration. The cascode stage includes at least two MOS transistors serially connected between a first voltage reference and a second voltage reference. The biasing circuit includes at least a first MOS replica transistor and a second MOS replica transistor, and two current generators for biasing the first and second MOS replica transistors. A circuit block detects a voltage value on a terminal of the second replica MOS transistor and applies a voltage to a gate terminal of the first replica transistor. Two circuit block implementations include a voltage amplifier and a folded cascode amplifier closed in a shunt feedback. Both implementations allow the threshold voltages of the cascode stage transistors to be tracked, as well as their Early and body effects.