Abstract:
An image reading apparatus for reading a document has an image sensor unit, which is moved along a platen glass in a sub-scanning direction, mounting an LED, a light guide and a sensor. A white reference panel for use of shading correction is provided on the platen glass on the side thereof opposite the image sensor unit. Light shield plates are provided on the platen glass on the side facing the image sensor unit along both sides of the white reference panel.
Abstract:
A document-guiding device that clips onto the image sensor of a document scanner ensures that documents to be scanned are introduced into the scanner at an optimal angle and are applied to the transparent surface of the image sensor at an optimal pressure, thereby avoiding scratching and soiling the sensor glass surface. Moreover, the deep input guide clip includes a sharp edge that acts as a scrapper to remove or flatten protruding impurities to further reduce soiling the sensor transparent surface. The deep input guide clip has the added benefit of stopping parasitic ambient light and protecting the image sensor against hard falling objects thus avoiding breakage of the transparent surface. The deep input guide clip forms a compact enclosure that may also hold a set of document proximity sensors and associated control electronics for precisely detecting the leading edge of the document when it is introduced in the scanner, its width and its trailing edge.
Abstract:
Deformation of a second optical carriage (B) due to heat is large on a (C) side where an inverter (31) is attached and small on a (D) side. A mirror supporting portion inside the second optical carriage (B) supports the mirror at one point on the (C) side and at two points on the (D) side. An angle of the reflecting mirror (8) depends on two protrusions on the (D) side where thermal deformation is small, and the mirror is supported at one point on the (C) side where thermal deformation is large. Thus, even if an angle of the mirror supporting portion (C) changes, the angle of the reflecting mirror (8) is not affected. Therefore, a change in the angle of the reflecting mirror (8) can be controlled to be small when temperature of the second optical carriage (B) rises during a reading operation, and decrease in reading accuracy due to thermal deformation of the second optical carriage (B) can be suppressed.
Abstract:
In a contact type image sensor including an illumination section including a light source and light guide to illuminate a document, an image sensing element for converting an optical image of the document into an electrical signal, a cylindrical rod lens for forming an optical image on the image sensing element, and a frame for integrally holding the illumination section, image sensing element, and cylindrical rod lens, the light guide has undergone antireflection treatment on a surface thereof on the document side.
Abstract:
An image reading apparatus includes a plurality of light-receiving elements, a lens array, and a light-shielding member. All of the light-receiving elements are arranged in a single line having an extremity. The light-shielding member covers one or more light-receiving elements disposed at the extremity.
Abstract:
A linear light source having a relatively large numerical aperture emits reading light of a substantially fully diffused light intensity distribution toward a film original that is held between support glass panels. The reading light passes through the film original and then through a slit that is disposed as a field stop between the film original and a reading lens and positioned closely to the film original for limiting a field of view with respect to the reading light. The reading light that has passed through the slit is converged by the reading lens onto CCD line sensors each having the same field of view as that of the slit.
Abstract:
A reading apparatus that reads a sheet includes: a first light emitting diode (LED) configured to emit light with a specific wavelength; a light emitting element including a second LED configured to emit light with the specific wavelength and a phosphor configured to be excited by the light emitted from the second LED; a line sensor configured to generate a reference signal according to a quantity of received light emitted from the first LED and reflected off the sheet, and also generate an image signal according to a quantity of received light emitted from the light emitting element and reflected off the sheet; and a controller configured to generate an image representing the sheet from a differential result obtained by removing a component corresponding to the reference signal from the image signal.
Abstract:
In order to mitigate image defects caused by unwanted disturbances as a carriage module travels from a continuous velocity transport module across a CVT ramp to a platen module, a bottom surface of the CVT ramp is recessed relative to bottom surfaces of the CVT glass and platen glass to facilitate a smooth transition as the CIS carriage passes the CVT ramp during scanning. An additional carriage button is also provided on the carriage surface to ensure that at least two carriage buttons are biased against the CVT-platen assembly at all times, thereby mitigating vibrational disturbance in the system during scanning motion. The carriage module may be a contact image sensor (CIS) carriage module, a Full Width Array (FWA) carriage module, or a folded Charged Coupled Device (CCD) carriage module.
Abstract:
A semiconductor device includes a first trans-impedance amplifier, a second trans-impedance amplifier, a peak hold circuit, a comparator and a threshold current setting circuit. The first trans-impedance amplifier converts a first current signal generated by a first photodiode, into which an optical signal is input, into a first voltage signal. The second trans-impedance amplifier converts a second current signal generated by a second photodiode, to which an optical signal is blocked, into a second voltage signal. The peak hold circuit holds the peak value of the first voltage signal. The comparator outputs a pulse on the basis of the first and second voltage signals. The threshold current setting circuit draws out a threshold current.
Abstract:
An image reading apparatus includes a conveyor. The conveyor includes a first roller, a second roller, and a contact portion. The first roller is configured to rotate on a first axis. One of the second roller and the contact portion is disposed on an upstream side of the first axis along a conveyance path, and the other of the second roller and the contact portion is disposed on a downstream side of the first axis along the conveyance path. A first distance between a surface of the first roller and a surface of the second roller and a second distance between a surface of the first roller and a surface of the contact portion is fixed.