Abstract:
An inductive power transfer system for driving multiple organic light emitting diode panels is provided. In an aspect, the system includes a plurality of transformers electrically coupled to one another in a daisy-chain formation and a plurality of power modules operatively coupled to respective ones of the plurality of transformers. Respective output voltages of the plurality of transformers are configured to provide power to organic light emitting diode panels in response to respective ones of the organic light emitting diode panels being coupled to respective ones of the plurality of the power modules via respective detachable transformers mechanically and operatively coupled to the respective ones of the organic light emitting diode panels. The system further includes a single switching module operatively coupled to the plurality of transformers and configured to drive the inductive power transfer system with a single output current.
Abstract:
A solid state light source driver circuit that operates in either a buck convertor or a boost convertor configuration is provided. The driver circuit includes a controller, a boost switch circuit and a buck switch circuit, each coupled to the controller, and a feedback circuit, coupled to the light source. The feedback circuit provides feedback to the controller, representing a DC output of the driver circuit. The controller controls the boost switch circuit and the buck switch circuit in response to the feedback signal, to regulate current to the light source. The controller places the driver circuit in its boost converter configuration when the DC output is less than a rectified AC voltage coupled to the driver circuit at an input node. The controller places the driver circuit in its buck converter configuration when the DC output is greater than the rectified AC voltage at the input node.
Abstract:
A lighting device includes an electricity storage electrically connected in parallel with a solid light source, a switching circuit that produces a current to supply the current to the electricity storage, and a control circuit that controls, according to a dimming level, burst dimming by controlling the switching circuit so that the solid light source is lit intermittently. When the dimming level is a threshold level or more, the control circuit sets an electricity storage capacity of the electricity storage to a first capacity, and sets a frequency by the burst dimming to a first frequency. When the dimming level is below the threshold level, the control circuit sets the electricity storage capacity to a second capacity smaller than the first capacity, and sets the frequency by the burst dimming to a second frequency higher than the first frequency.
Abstract:
An electronic display assembly which allocates power to a plurality of displays without exceeding a maximum current level for the circuit is disclosed. An exemplary system preferably includes an AC current sensor, a power load sharing controller, ambient light sensors for each display, and a brightness controller for each display. A maximum total current draw may be selected. The ambient light contacting each display may be measured and a corresponding desired brightness caIculated. Depending on the present amount of current draw, the system determines if the displays can be driven at the desired brightness without exceeding the maximum total current draw. If yes, the displays are driven at their desired brightness. If no, the desired brightness for each display may be slightly reduced to prevent exceeding the maximum total current draw. Thus, as the ambient light varies between the displays, the available power may be shared.
Abstract:
The present invention aims to provide a luminescent system enabling contactless power supply, having a high ratio of light emission region, and securing a desired quantity of emitted light. The luminescent system is constituted by an organic EL device and a fixed-side wall surface. The device is formed by stacking an electrode layer of an anode side, an organic light-emitting layer, and a transparent electrode layer of a cathode side on a substrate and being sealed by a sealing part. Electrodes with a planar expanse are stacked on a face near the wall surface and are arranged so as to overlap a light emitting region where the organic light-emitting layer is disposed. Electrodes with a planar expanse are embedded in the wall surface. A power unit is electrically connected between the electrodes. The electrodes of the device and of the wall surface are opposite each other across a flooring material.
Abstract:
A pixel unit driving circuit and a method thereof, a pixel unit and a display apparatus can improve uniformity in the brightness of an OLED panel. The pixel unit driving circuit comprises a driving thin film transistor (DTFT), a matching thin film transistor (MTFT), a signal-erasing thin film transistor (ETFT), a charging control unit (31), a driving control unit (32) and a storage capacitor (Cs). A gate of the driving thin film transistor (DTFT) is connected with a first end of the storage capacitor (Cs) and is connected with a driving power supply (VDD) via the charging control unit (32), a source thereof is connected with a driving power supply (VSS), and a drain thereof is connected with the OLED. A gate and drain of the signal-erasing thin film transistor (ETFT) is connected with the second end of the storage capacitor (Cs), a source of the signal-erasing thin film transistor (ETFT) is connected with the gate and the drain of the matching thin film transistor, and is connected with the data line via the charging control unit (31). A source of the matching thin film transistor (MTFT) is connected with a second end of the storage capacitor (Cs).
Abstract:
The power supply device includes an AC-DC conversion unit configured to provide a source DC voltage signal; a first DC-DC conversion unit configured to generate a first DC voltage signal and a second DC voltage signal according to the source DC voltage signal, output the first DC voltage signal to the load through a first output interface and output the second DC voltage signal to the load through a second output interface; a reference voltage signal generation unit configured to generate a reference voltage signal by taking the first DC voltage signal and the second DC voltage signal as input signals, output the reference voltage signal to the load; wherein a voltage value of the reference voltage signal is smaller than a voltage value of the first DC voltage signal and is greater than a voltage value of the second DC voltage signal.
Abstract:
Methods, devices, and circuits are disclosed for regulating a first parameter of one or more LEDs. The methods, devices, and circuits further disclose switching, in response to an indication of a dimmer interface, from regulating the first parameter of the one or more LEDs to regulating a second parameter below a light generation threshold of the one or more LEDs, wherein switching from regulating the first parameter to regulating the second parameter causes the one or more LEDs to enter a non-light generation mode.
Abstract:
A pixel unit driving circuit, a pixel unit and a display device, wherein said pixel unit driving circuit of the pixel unit comprises a switching unit (201) having a first terminal connected to a high-voltage signal terminal (Vdd), a second terminal connected to a light-emitting device (OLED), a third terminal connected to a first control line (CN1), and a fourth terminal connected to a second control line (CN2); a driving transistor (T1) having a drain connected to the switching unit (201), and a source connected to a low-voltage signal terminal (Vss); and a capacitance storage unit (202) having a first terminal connected to the gate of the driving transistor (T1), a second terminal connected to the source of the driving transistor (T1), and a third terminal connected to the second control line (CN2). Amount and on-off of the driving current Ioled and data current Idata can be controlled via the switching unit (201) to make the current scaling ratio Idata/Ioled change inversely as Ioled changes, thus guaranteeing the data current Idata can quickly charge the first capacitor regardless of amount of the driving current Ioled.
Abstract:
Disclosed systems provide keyboard backlighting from organic light emitting diodes (OLEDs) placed under the keys. A keyboard stack optionally includes a light guide or reflector. A single OLED can illuminate multiple keys through a light guide. OLEDs used for backlighting may be arranged in a strip to illuminate more than one key. OLEDs can be deposited directly to the light guide or reflector, and can include a seal to promote air stability.