摘要:
A counter-current catalyst regenerator with at least two stages of counter-current contact along with a regenerator riser is proposed. Each stage may comprise a permeable barrier that allows upward passage of oxygen-containing gas and downward passage of coked catalyst into each stage, but inhibits upward movement of catalyst to mitigate back mixing and approximate true counter-current contact and efficient combustion of coke from catalyst. The regenerator riser may provide a passage to transport the catalyst and may serve as a secondary stage for coke combustion to provide the regenerated catalyst.
摘要:
In accordance with one embodiment of the present disclosure, an oxygen carrying material may include a primary active mass, a primary support material, and a secondary support material. The oxygen carrying material may include about 20% to about 70% by weight of the primary active mass, the primary active mass including a composition having a metal or metal oxide selected from the group consisting of Fe, Co, Ni, Cu, Mo, Mn, Sn, Ru, Rh, and combinations thereof. The oxygen carrying material may include about 5% to about 70% by weight of a primary support material. The oxygen carrying material may include about 1% to about 35% by mass of a secondary support material.
摘要:
A process for producing black powder oxygen carriers for use in a chemical looping combustion unit includes the steps of: (a) removing and collecting the black powder waste material that was formed in a gas pipeline; (b) pre-treating the collected black powder to adjust its spherical shape to avoid attrition and fines production; and (c) activating the black powder to increase its reactivity rate and produce the black powder oxygen carrier that is suitable for use in the chemical looping combustion process as an oxygen carrier.
摘要:
The present invention discloses a method of applying electric arc furnace dust in chemical looping combustion process, and particularly a method of applying electric arc furnace dust in chemical looping combustion process without releasing of zinc vapor. The method of applying electric arc furnace dust in chemical looping combustion process comprises following steps: (1) providing an electric arc furnace dust and an inert support (Al2O3) and mixing the electric arc furnace dust and the inert support (Al2O3) to obtain a mixture of the electric arc furnace dust and the inert support (Al2O3); (2) calcining the mixture of the electric arc furnace dust and the inert support (Al2O3) with high temperature to obtain another mixture of Fe2O3, ZnAl2O4, and Al2O3; (3) applying the mixture of Fe2O3, ZnAl2O4, and Al2O3 as oxygen carrier and inert support in a chemical looping combustion process.
摘要:
The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFexOy on an inert support, where MFexOy is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFexOy may be one of MgFe2O4, CaFe2O4, SrFe2O4, BaFe2O4, CoFe2O4, MnFeO3, and combinations thereof. The MFexOy is supported on an inert support. The inert support disperses the MFexOy oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFexOy comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe2O3, and improved oxidation rates over CuO.
摘要:
A process for producing black powder oxygen carriers for use in a chemical looping combustion unit includes the steps of: (a) removing and collecting the black powder waste material that was formed in a gas pipeline; (b) pre-treating the collected black powder to adjust its spherical shape to avoid attrition and fines production; and (c) activating the black powder to increase its reactivity rate and produce the black powder oxygen carrier that is suitable for use in the chemical looping combustion process as an oxygen carrier.
摘要:
The present invention discloses a method of applying electric arc furnace dust in chemical looping combustion process, and particularly a method of applying electric arc furnace dust in chemical looping combustion process without releasing of zinc vapor. The method of applying electric arc furnace dust in chemical looping combustion process comprises following steps: (1) providing an electric arc furnace dust and an inert support (Al2O3) and mixing the electric arc furnace dust and the inert support (Al2O3) to obtain a mixture of the electric arc furnace dust and the inert support (Al2O3); (2) calcining the mixture of the electric arc furnace dust and the inert support (Al2O3) with high temperature to obtain another mixture of Fe2O3, ZnAl2O4, and Al2O3; (3) applying the mixture of Fe2O3, ZnAl2O4, and Al2O3 as oxygen carrier and inert support in a chemical looping combustion process.
摘要:
A process of combusting a gaseous volatile organic compound over a modified alumina catalyst at a temperature below 5° C. while exothermically producing CO2 and H2O at a temperature from about 5° C. to about 1100° C.
摘要翻译:在低于5℃的温度下在改性氧化铝催化剂上燃烧气态挥发性有机化合物的过程,同时在约5℃至约1100℃的温度下放热产生CO 2和H 2 O.
摘要:
A gas turbine combustor. The gas turbine combustor may include a central combustion nozzle with a catalyst therein and a number of outer combustion nozzles surrounding the central combustion nozzle.
摘要:
An integrated reformer and combustion apparatus for use in a fuel cell system comprises at least one reformer plate (3) at which in use a reforming reaction can take place and at least one combustion plate (1) at which in use a combustion reaction can take place. The plates are arranged in a stack such that the reformer plates (3) and combustion plates (1) are interspersed. The apparatus is arranged such that in use a reforming reaction and a combustion reaction can take place simultaneously, the combustion reaction providing heat for the reforming reaction. A further fluid circuit (19, 29) may be provided in thermal communication with at least one of the reformer unit and the combustion unit so as to allow the temperature of that unit to be controlled.