Abstract:
A wearable device using a bone conduction speaker, including a wearable band worn on an arm of a user, a communication module attached to the wearable band, an audio processor configured to process an audio signal transmitted and received through the communication module, a microphone configured to transmit a voice signal, which is input in sound by the user, to the audio processor, a bone conduction speaker configured to output a reception audio signal, which is processed by the audio processor, in bone conduction mode, and an echo canceller configured to cancel the voice signal in an audio signal output from the bone conduction speaker, is provided.
Abstract:
The present invention relates to a method for controlling a bit rate and an apparatus therefor, and more specifically to an apparatus for storing a bit rate changed according to a significant level in a memory and a method for determining the bit rate, which meets the requirements for the distortion according to the memory space limitation and the significant level of the image information so as to minimize the energy consumption.
Abstract:
A method for controlling a display screen of a mobile terminal includes acquiring a first image and a second image distinguished from the first image, using a cut-off filter provided in the camera attached to a front of the mobile terminal to cut off one of R (Red), G (Green) and B (Blue) signals, recognizing an object comprising a user's face or gesture based on the first image and second image, and controlling on/off of the display screen provided in the mobile terminal based on the result of the recognition.
Abstract:
A method for determining a distance between an image sensor and an object includes acquiring a first image for an object and a second image distinguished from the first image, using a cut-off filter for cutting off one of R G and B signals, and determining a distance between the image sensor and the object.
Abstract:
A video encoding system for dynamically managing energy, a data rate and data distortion is disclosed. The video encoding system for dynamically managing the energy, the data rate and the data distortion includes one or more sensors, an encoder configured to encode a signal obtained by the one or more sensors, an event sensing unit configured to determine whether an event is generated from the signal obtained by the one or more sensors, a memory configured to store the signal encoded by the encoder, a power supply unit configured to supply power to the one or more sensors, the event sensing unit, the encoder or the memory, and an control unit configured to control configuration of the energy supplied to the one or more sensors, the event sensing unit, the encoder or the memory.
Abstract:
Disclosed is a transmitter used for a wireless charging system. The transmitter includes a plurality of phase locked loops (PLLs) that outputs single-phase power signals, a plurality of antennas that transmits power signals transmitted from the plurality of PLLs to a receiver, and a controller that determines a specific frequency for the receiver based on a signal strength indication (RSSI) received from the receiver and allows output frequencies of the plurality of PLLs to be different from each other in a specific frequency band preset based on the specific frequency.
Abstract:
A camera system includes a single lens and an image sensor including a reference pixel array including a plurality of W (white) pixels in a two-dimensional arrangement and a single microlens formed on the plurality of W pixels to be shared, and at least one color pixel array including two W pixels and two color pixels in a two-dimensional arrangement, and a single microlens disposed on the two W pixels and the two color pixels to be shared. Light shielding layers formed with Offset Pixel Apertures (OPAs) are disposed on the plurality of W pixels included in the reference pixel array and the two W pixels included in the at least one color pixel array, respectively, and the OPAs are formed on the light shielding layers in the reference pixel array and the at least one color pixel array, respectively, to maximize a spaced distance between the OPAs.
Abstract:
A camera system is provided to increase a baseline. The camera system includes a single lens, and an image sensor includes at least one pixel array, each of the at least one pixel array including a plurality of pixels in a two-dimensional arrangement and a single microlens disposed on the plurality of pixels to be shared. Light shielding layers formed with Offset Pixel Apertures (OPAs) are disposed on at least two pixels of the plurality of pixels, and the OPAs are formed on the light shielding layers to maximize a spaced distance between the OPAs.
Abstract:
An image stitching method using viewpoint transformation and a system therefor are provided. The method includes obtaining images captured by a plurality of cameras included in the camera system, performing viewpoint transformation for each of the images using a depth map for the images, and stitching the images, the viewpoint transformation of which is performed.
Abstract:
An apparatus for measuring fine particulate matter to determine a time to replace each of a filter and an air quality sensor based on a concentration of a filtered fine particulate matter and a method thereof are provided. The apparatus for measuring fine particulate matter is applied to an air cleaner, a personal environment monitoring system (PEMS), a fine particulate matter module, or the like by sensing a target material, such as harmful gas, as well as particulate matter and fine particulate matter in the air and providing result information.