Abstract:
The present invention provides a cup lid including a top shield, at least two ring shields, and at least two snap-on components. The ring shields extending from a lower edge of the top shield downward are peripherally spaced from each other. Each snap-on component extends from the lower edge of the top shield downward and is arranged between two adjacent ring shields. Each snap-on component includes a U-shaped border, a tab, and at least one Y-shaped resisting member. The U-shaped border and the top shield define an opening. The tab extends from the U-shaped border outward. The Y-shaped resisting member extends from an interior of the U-shaped border upward and is bendably held in the opening. The cup lid can be fitted on a cup body or separated from the cup body through the Y-shaped resisting members without a further operation step for repeated utilization and environmental effect.
Abstract:
An image sensing module utilizes an image sensor to sense objects and a mirror image of the objects in a mirror through a plurality of first light filtering components with a first transmission spectrum and a plurality of second light filtering components with a second transmission spectrum for generating an image. A light filtering module substantially having the first transmission spectrum is disposed in front of the mirror. The image includes a plurality of pixels. Each pixel includes a first sub data and a second sub data. The image sensing module utilizes an image sensing controller to detect real images corresponding to the objects and virtual images correspond to the mirror image of the objects from the image according to the first sub data and the second sub data of the plurality of pixels.
Abstract:
A double data rate pseudo SRAM (DDR PSRAM) is provided. The DDR PSRAM includes a data receiver, a memory and an address decoder. The data receiver receives a first single data rate data from a controller via a common bus according to a clock, and receives a double data rate data from the controller via the common bus according to a data strobe signal from the controller. The address decoder decodes the first single data rate data to obtain an address of the memory. The data receiver stores the double data rate data into the address of the memory.
Abstract:
An optical touch system, an apparatus and a method for calculating the position of an object are provided. The apparatus includes an image sensor and a processing circuit. The processing circuit selects at least one dot from a curve segment of a brightness distribution profile obtained from a background image, wherein the curve segment corresponds to an imaging range of an object. And the processing circuit regards the column pixel brightness value corresponding to the dot as a brightness reference value. Afterwards, the processing circuit calculates brightness difference between the brightness reference value and the column pixel brightness values corresponding to the dots of a curve segment of a brightness distribution profile obtained from a sensed image, so as to further calculate a gravity of the imaging range. After that, the processing circuit regards the gravity as a representative position of the object in the sensed image.
Abstract:
An optical touch system includes an image sensor for detecting at least one object and a processor coupled to the image sensor. The processor is configured to determine the number of pixel clusters created by the at least one object on an image generated from the image sensor and to generate gesture information when the number of pixel clusters is greater than a predetermined pixel cluster number.
Abstract:
A double data rate pseudo SRAM (DDR PSRAM) is provided. The DDR PSRAM includes a data receiver, a memory and an address decoder. The data receiver receives a first single data rate data from a controller via a common bus according to a clock, and receives a double data rate data from the controller via the common bus according to a data strobe signal from the controller. The address decoder decodes the first single data rate data to obtain an address of the memory. The data receiver stores the double data rate data into the address of the memory.
Abstract:
A water-proof junction box and a water-proof connector assembly therein are provided. The water-proof junction box includes a junction box body, a junction box cover and at least one water-proof connector assembly deposited at a lateral of the junction box body. The water-proof connector assembly includes a tube, a water-blocking sleeve, a pressing element and a fastening element, all of a cannular shape. Therein, the tube and the junction box body are integrated, and the tube has an externally threaded portion. The water-blocking sleeve is for being inserted into the tube and has a flange as well as a sleeve portion. The pressing element is for being mounted around the sleeve portion of the water-blocking sleeve. The fastening element is internally formed with an internally threaded portion for screwingly coupling the externally threaded portion of the tube.
Abstract:
An image sensor includes a sensor matrix including a plurality of sensing elements and a plurality of shutter control lines. Each sensing element includes an electronic shutter and a photo-detector, wherein the electronic shutter controls the exposure time of the photo-detector. Each shutter control line couples to a row or column of the electronic shutters, whereby different rows or columns of the electronic shutters can be independently controlled, and the photo-detectors in the same row or column can have the same exposure time.
Abstract:
A sensing system includes a complex reflector and an image sensor, in which the complex reflector is disposed on one side of a flat panel. The complex reflector includes a first section and a second section which are stacked, in which the first section provides a mirror image and a real image, and the second section provides a real image. The image sensor is used to capture an image generated by an object when touching a surface of the flat panel, and in the image captured by the image sensor, the object simultaneously generates a first object image in an image region corresponding to the second section and an image region corresponding to the first section, and generates a second object image in the image region corresponding to the first section.
Abstract:
In a sensing system and a method for obtaining a location of a pointer, the sensing system includes a sensing area, a reflective mirror, a first image sensor and a second image sensor. The reflective mirror is configured for generating a mirror image of the sensing area. The sensing system utilizes the above two image sensors to sense the pointer disposed in the sensing area and a mirror image of the pointer for obtaining two coordinate values. And then the sensing system endues each of the two coordinate values with a weighting factor for calculating the location of the pointer.