摘要:
A capsule medication administration system includes: a first capsule for internal body marking; a second capsule for medication; a marking device which makes a marking within a living body; a drug retention section which retains a drug; a release device which releases the drug; a detection device which detects the marking; a decision device which decides whether or not a marking which has been detected by the detection device is a specified marking; and a release control device which operates the release device, if it has been decided by the decision device that it is the specified marking; wherein the first capsule comprises the marking device. The second capsule comprises the drug retention section and the release device.
摘要:
There is provided an in-vivo information acquisition apparatus capable of detecting high-accuracy in-vivo information substantially at the same time in a plurality of different examination sites in a body cavity and an in-vivo information acquisition apparatus system capable of introducing a plurality of in-vivo information acquisition apparatuses into a patient at the same time. The in-vivo information acquisition apparatus includes a specimen-collecting section for collecting a specimen at an examination site in a body cavity, a specimen-evaluating section for evaluating the specimen collected by the specimen-collecting section and outputting an evaluation result, a labeling section having identification information unique to the in-vivo information acquisition apparatus, a communication section for receiving a signal transmitted from the outside and for transmitting to the outside the evaluation result output by the specimen-evaluating section, and a power supply section for supplying electrical power.
摘要:
A body-insertable device is introduced into a desired part in a body for injecting a liquid medicine stored in a casing into the desired part. The body-insertable device includes a projecting portion which projects an injection needle injecting the liquid medicine toward the desired part; a detecting unit which detects a position relation between a biological tissue surface in the desired part and the injection needle; and a control unit. The control unit controls an amount of projection of the injection needle according to the position relation detected by the detecting unit, and controls a puncture depth of the injection needle from the biological tissue surface.
摘要:
An image processing system includes an external device including an orientation specifying unit that specifies orientation of the body-insertable apparatus, a rotation correcting unit that aligns orientations of a plurality of pieces of image data, a screen generating unit that generates a screen displaying the image data, an average color bar generating unit that calculates an average color of the image data, generates an image of the calculated average color, and generates an average color bar in which images of the generated average colors are connected, and an organ image generating unit that generates an organ image, obtained by superimposing the images of the average colors generated by the average color bar generating unit. The screen generating unit generates the screen in which the average color bar generated by the average color bar generating unit is incorporated, and incorporates the organ image into the screen.
摘要:
An object of the present invention is to continuously display a series of images of the inside of the subject until the intra-body indwelling capsule is placed at the desired site in the subject, and to easily place the intra-body indwelling capsule endoscope at the desired site. The intra-subject indwelling system 1 according to the present invention includes an endoscope device 14 for imaging a first image of the inside of the subject; an intra-body indwelling capsule 2, for imaging a second image of the inside of the subject; a monitor device 12 for receiving the second image; a receiving device 13, a monitor 11 for displaying the first image or the second image; and an image switching device 10. The intra-body indwelling capsule 2 is arranged at the distal end of the inserting unit 5, and the separation from the inserting unit 5 is detected and the separation detection result is transmitted. The receiving device 13 receives the separation detection result. The image switching device 10 receives the first image from the endoscope device 14 and the second image from the monitor device 12, and switches the display image of the monitor 11 from the second image to the first image when receiving the separation detection result from the receiving device 13.
摘要:
A capsule medical system is provided with a capsule medical device to be inserted into a subject, at least one electrode pad having a plurality of receiving electrodes, a receiving electrode switching unit, a control unit for controlling operations of the receiving electrode switching unit, and a position detector. The capsule medical device has a biological information acquiring unit for acquiring biological information of the subject, and a transmitting unit for outputting the biological information from a transmitting electrode through a living body. At least one electrode pad detects the biological information by a plurality of receiving electrodes. The receiving electrode switching unit switches a pair of receiving electrodes among the plurality of receiving electrodes. The position detector detects a position of the capsule medical device inside the subject based on the biological information detected by the electrode pad, and position coordinate data of the plurality of receiving electrodes.
摘要:
An encapsulated endoscope system in accordance with the present invention comprises: an encapsulated endoscope that rotates to develop a thrust; a controller that moves the encapsulated endoscope in an intended direction of advancement; an imaging unit incorporated in the encapsulated endoscope; and an image processing unit that receives image data sent from the imaging unit, and produces an image, which results from rotation of the received image data, according to the rotational phase of the encapsulated endoscope.
摘要:
A capsule guiding system includes: a capsule medical device that is introduced into a subject and takes an in-vivo image in the subject; a capsule guiding unit that guides the capsule medical device; an image acquisition unit that acquires the in-vivo image of the subject from the capsule medical device; a display unit that displays the in-vivo image of the subject acquired by the image acquisition unit; a storage unit that sequentially stores guidance information of the capsule guiding unit that guides the capsule medical device; an input unit that inputs instruction information to instruct backward moving of the capsule medical device; and a control unit that controls, when the instruction information is input, the capsule guiding unit such that the capsule medical device backwardly moves on a trajectory based on the guidance information of the capsule guiding unit stored in the storage unit.
摘要:
An encapsulated endoscope system in accordance with the present invention comprises: an encapsulated endoscope that rotates to develop a thrust; a controller that moves the encapsulated endoscope in an intended direction of advancement; an imaging unit incorporated in the encapsulated endoscope; and an image processing unit that receives image data sent from the imaging unit, and produces an image, which results from rotation of the received image data, according to the rotational phase of the encapsulated endoscope.
摘要:
A capsule endoscope system includes a contact detector that detects contact with an inner wall of a lumen in the subject; a magnet which is equipped in the capsule endoscope; a magnetic field generating device that is provided at a position, which is fixed with respect to the magnet, and generates a guidance magnetic field to apply to the magnet from the outside of the subject; and a magnetic field generation controller that performs control for guidance in a direction in which the capsule endoscope moves, which is the direction of the axis of the lumen, and performs guidance control for separating the capsule endoscope from the inner wall of the lumen based on a result of detection by the contact detector.