Abstract:
Provided are a reconfigurable processor, which is capable of reducing the probability of an incorrect computation by analyzing the dependence between memory access instructions and allocating the memory access instructions between a plurality of processing elements (PEs) based on the results of the analysis, and a method of controlling the reconfigurable processor. The reconfigurable processor extracts an execution trace from simulation results, and analyzes the memory dependence between instructions included in different iterations based on parts of the execution trace of memory access instructions.
Abstract:
An image forming apparatus includes a heat roller heated to a preset temperature; a pressure roller for having conductivity and forming a nip by pressure-contacting with the heat roller; a power supply unit to apply a bias voltage to the pressure roller; and a controller to, when a printing paper enters the nip, control the power supply unit to apply the bias voltage to the pressure roller. When a time interval is longer than a preset time, the controller can control the power supply unit not to apply the bias voltage when the printing paper is not placed in the nip, and when the time interval is shorter than the preset time, the controller can control the power supply unit to apply the bias voltage when the printing paper is not placed in the nip.
Abstract:
A hold-down spring unit for a top nozzle of a nuclear fuel assembly. The hold-down spring unit is coupled to the upper end of the top nozzle of the nuclear fuel assembly. The hold-down spring unit includes a first spring which provides a hold-down force upon the nuclear fuel assembly under start-up conditions or hot full power conditions of a nuclear reactor, and a second spring which provides an additional hold-down force upon the nuclear fuel assembly under start-up conditions of the nuclear reactor. The hold-down margin under start-up conditions or hot full power conditions is reduced, thus enhancing the mechanical and structural stability of the nuclear fuel assembly.
Abstract:
The present disclosure provides a graphite crucible induction-based silicon melting. The graphite crucible comprises a cylindrical body having a plurality of slits which is formed through an outer wall and an inner wall of the cylindrical body and a bottom part connected with an edge of the cylindrical body to seal an end of the cylindrical body.
Abstract:
There is provided a soft electrode material including an electrode layer containing a mixture of carbon black and at least one selected from carbon nanotube and graphene, so that the soft electrode material can facilitate various transformation thereof in response to physical transformation of an electrode, such as warpage, elongation, and the like; prevent the rapid reduction in electric conductivity of an electrode while maintaining flexibility and elasticity of the electrode at the time of the transformation; and provide excellent reliability, and thus, electrical-mechanical energy conversion efficiency of a soft electronic component such as an actuator including the soft electrode material, can be increased, and electric conductivity of the electrode layer can be improved as the electrical-mechanical conversion efficiency increases.
Abstract:
The present disclosure provides an apparatus for manufacturing a silicon substrate for solar cells using continuous casting, which can improve quality, productivity and energy conversion efficiency of the silicon substrate. The apparatus includes a crucible unit configured to receive raw silicon and having a discharge port, a heating unit provided to an outer wall and an external bottom surface of the crucible unit and heating the crucible unit to form molten silicon, a casting unit casting the molten silicon into a silicon substrate, a cooling unit rapidly cooling the silicon substrate, and a transfer unit disposed at one end of the cooling unit and transferring the silicon substrate. The casting unit includes a casting unit body having a casting space defined therein to be horizontally connected to the discharge port, and an assistant heating mechanism that preheats the casting unit body to control a solidification temperature of the silicon substrate.
Abstract:
A top nozzle is provided. The top nozzle can include a coupling plate, a perimeter wall and a hold-down spring unit. The coupling plate can be coupled to a guide thimble of the nuclear fuel assembly. The perimeter wall can protrude upwards from the perimeter of the coupling plate. A spring clamp can be provided on the upper surface of the perimeter wall. The hold-down spring unit can be mounted to the upper surface of the perimeter wall in such a way to couple a corresponding end of the hold-down spring unit to the spring clamp. A fastening pin hole can be vertically formed through an upper surface of the spring clamp. A spring insert hole into which the hold-down spring unit can be inserted and formed by electro-discharge machining in an insert direction of the hold-down spring.
Abstract:
Single-crystal silicon carbide nanowires and a method for producing the nanowires are provided. The single-crystal silicon carbide nanowires have a very high aspect ratio and can be used for the fabrication of nanoelectronic devices, including electron gun emitters and MEMS probe tips, for use in a variety of displays and analyzers. Further provided is a filter comprising the nanowires. The filter is applied to systems for filtering vehicle engine exhaust gases to achieve improved filtering performance and increased lifetime.
Abstract:
Disclosed is a structure of a downlink common channel for transmitting an ACK/NACK to notify whether retransmission should be performed through a transmission position of the downlink common channel according to a channel code of a time slot allocated to a UE, and a method for distinguishing an ACK from a NACK, in using a HARQ scheme for uplink transmission of a TDD CDMA scheme in a 3G mobile communication.
Abstract:
A reconfigurable processor which merges an inner loop and an outer loop which are included in a nested loop and allocates the merged loop to processing elements in parallel, thereby reducing processing time to process the nested loop. The reconfigurable processor may extract loop execution frequency information from the inner loop and the outer loop of the nested loop, and may merge the inner loop and the outer loop based on the extracted loop execution frequency information.