Abstract:
A power generation system capable of eliminating NOx components in the exhaust gas by using a 3-way catalyst, comprising a gas compressor to increase the pressure of ambient air fed to the system; a combustor capable of oxidizing a mixture of fuel and compressed air to generate an expanded, high temperature exhaust gas; a gas turbine engine that uses the force of the high temperature gas; an exhaust gas recycle (EGR) stream back to the combustor; a 3-way catalytic reactor downstream of the gas turbine engine outlet which treats the exhaust gas stream to remove substantially all of the NOx components; a heat recovery steam generator (HRSG); an EGR compressor; and an electrical generator.
Abstract:
The present subject matter discloses a fluid cooled reformer for gas turbine systems and a method for cooling both a fuel reformer and a heated reformate stream produced by such fuel reformer. The fluid cooled reformer may include a pressure vessel and a reactor assembly disposed within the pressure vessel, The reactor assembly may include a reactor and may be configured to receive and reform an oxygen/fuel mixture to produce a heated reformate stream. Additionally, the fluid cooled reformer may include an inlet configured to direct a fluid stream into the pressure vessel. At least a portion of the fluid stream may be used to cool the reactor assembly. A reformate cooling section may be disposed downstream of the reactor of the reactor assembly and may be configured to cool the heated reformate stream.
Abstract:
A system, one embodiment, includes an annular seal configured to seal a turbine fuel nozzle to a turbine combustor, wherein the annular seal includes a first annular seal portion having an inner annular surface, a first base portion, and a first peripheral portion opposite from the first base portion. The embodiment also includes the first annular seal portion configured to couple to a second annular seal portion having an outer annular surface, a second base portion, and a second peripheral portion opposite from the second base portion. Further, the embodiment includes the first and second peripheral portions sealable by a weld.
Abstract:
A combustor is disclosed that includes a baffle plate and a fuel nozzle extending through the baffle plate. The combustor may also include a shroud extending from the baffle plate and surrounding at least a portion of the fuel nozzle. A passage may be defined between the shroud and an outer surface of the fuel nozzle for receiving a first fluid. Additionally, the passage may be sealed from a second fluid flowing adjacent to the shroud.
Abstract:
A reformer for use in a gas turbine engine specially configured to treat a supplemental fuel feed to the combustor that includes a reformer core containing a catalyst composition and an inlet flow channel for transporting the reformer fuel mixture, air and steam (either saturated or superheated) into a reformer core. An outlet flow channel transports the resulting reformate stream containing reformed and thermally cracked hydrocarbons and substantial amounts of hydrogen out of the reformer core for later combination with the main combustor feed. Because the catalytic partial oxidation reaction in the reformer is highly exothermic, the additional heat is transferred (and thermally integrated) using one or more heat exchange units for a first and/or second auxiliary gas turbine fuel stream that undergo thermal cracking and vaporization before combining with the reformate. The combined, hydrogen-enriched feed significantly improves combustor performance.
Abstract:
An impingement shield assembly for a turbine includes a first impingement shield portion and a second impingement shield joined to the first impingement shield portion. The assembly also includes a first connection portion formed on the first impingement shield portion, a second connection portion formed on the first impingement shield portion and first and second wedge weld portions that mate with and hold the first and a second connection portions in a fixed relationship to one another.
Abstract:
A turbomachine includes a compressor section, a combustor operatively connected to the compressor section, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a plurality of mixing tube elements. Each of the plurality of mixing tube elements includes a conduit having a first fluid inlet, a second fluid inlet arranged downstream from the first fluid inlet, a discharge end arranged downstream from the first and second fluid inlets, and a vortex generator arranged between the first and second fluid inlets. The vortex generator is configured and disposed to create multiple vortices within the conduit to mix first and second fluids passing through each of the plurality of mixing tube elements.
Abstract:
A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.
Abstract:
The present application provides a fuel nozzle for use in a gas turbine. The fuel nozzle may include a mounting flange, a number of premixers attached to each other, and a number of gas pathways extending from the mounting flange to the number of premixers.
Abstract:
A gas turbine includes a combustor liner having at least one hole formed therein. The gas turbine also includes a flow sleeve that at least partially surrounds the liner thereby forming a plenum between the flow sleeve and the liner, the plenum having an airflow therethrough, a portion of the airflow passing through the at least one hole in the liner and into the liner thereby reducing the mass of the airflow in the plenum. The flow sleeve has an axial profile that is reduced in cross section dimension at a predetermined axial location of the flow sleeve, thereby reducing a width of the plenum at the predetermined axial location. The reduction at the cross section dimension in the flow sleeve increases a velocity of the airflow in the plenum at the predetermined axial location, the increased velocity airflow increasing transfer of heat away from the liner.