Abstract:
A paging message is received at a first access node for a wireless device. It is determined by the first access node that the wireless device is unavailable at the first access node, and the paging message is forwarded from the first access node to a second access node over a communication link between the first access node and the second access node. A message can also be sent from the first access node to a controller node to prevent the sending of a second paging message from the controller node.
Abstract:
Dynamically limiting MIMO transmission layers assigned to wireless devices to mitigate uplink noise levels measured at an access node (e.g. RSSI). The transmission layers can be adjusted based on a device capability or power class. For example, maximum MIMO transmission layers assigned to HPUEs can be reduced first.
Abstract:
Recovering bearers after a service interruption of a relay node includes receiving, at a relay gateway, an instruction to modify bearers from a mobility management entity (MME), the instruction identifying one or more bearers that were in use by the relay node prior to the service interruption, identifying, at the relay gateway, at least one additional bearer in use prior to the service interruption not identified in the instruction received from the MME, and instructing the MME to create the at least one additional bearer. The at least one additional bearer can include a non-GBR bearer, such as a bearer with QCI of 1 used for VoLTE.
Abstract:
Performing carrier aggregation with narrow bandwidth carriers includes determining that a spectrum block allocated to a sector has a bandwidth that is narrower than a threshold bandwidth, wherein the threshold bandwidth is based on a size of a synchronization signal block (SSB), configuring the spectrum block as a narrow bandwidth carrier, performing carrier aggregation with the narrow bandwidth carrier as a secondary component carrier aggregated with the primary component carrier, and scheduling the SSB within the primary component carrier.
Abstract:
Methods and systems for adjusting reference signal reporting based on path loss and fading and cell edge conditions experienced by wireless devices in 5G EN-DC networks. As the path loss increases, a period between reference signal reports (or a frequency of reference signal reports) can be increased. This ensures continued quality of service for the wireless devices. Reference signals can include SRS, DMRS, PTRS, etc.
Abstract:
Methods and systems for preventing or delaying handovers to target access nodes that are experiencing intermodulation distortion. Ensuring service quality in dual-connectivity (EN-DC) wireless networks includes determining that a target access node for a handover of a wireless device is experiencing an intermodulation distortion level that exceeds a first threshold, and adjusting handover thresholds to delay the handover of the wireless device to the target access node. If the handover is necessary, dual-connectivity is disabled for the wireless device.
Abstract:
Systems and methods for operating a wireless communication system are provided. A network node can determine a first frequency band criteria and a second frequency band criteria based on information from an access node. The network node can determine a first timer duration of a first timer. The first timer duration can be based on the first frequency band criteria. The network node can determine a second timer duration of a second timer. The second timer can be based on the second frequency band criteria. The first timer duration can be different from the second timer duration. The access node can transmit the first timer duration and the second timer duration to the wireless device after the wireless device establishes communication with the access node.
Abstract:
Preserving a bandwidth of a mobile backhaul by reducing a quantity of antenna elements that can concurrently deploy two or more radio air interfaces including 4G LTE and 5G NR. The reduction of antenna elements using concurrent mode may be performed incrementally, based on the backhaul bandwidth usage meeting different predefined thresholds.
Abstract:
Scheduling full-duplex transmissions includes configuring adjacent time slots of an air interface resource with different ratios of uplink portions, downlink portions, and flexible portions, scheduling transmissions in each adjacent time slot based on whether or not the transmissions are latency-sensitive or delay-sensitive or control transmissions. The uplink portions, downlink portions, and flexible portions comprise symbols within time slots of a subframe, and can vary based on a numerology. The flexible portions are symbols configured to simultaneously transmit uplink data and downlink data.
Abstract:
Systems and methods are described for transmitting a beamformed signal to a wireless device proximate to an antenna system. An uplink signal may be received at an access node from a wireless device in communication with the access node. It may be detected that the wireless device is proximate to an antenna system, wherein the antenna system does not comprise the access node. The detection may be based on a determined location for the wireless device, an indication from the antenna system, a retrieved signal level metric for the wireless device, and the like. It may be then determined that a beamformed signal is to be transmitted to the wireless device based on the detecting. And the beamformed signal may be transmitted from the access node to the wireless device.