Abstract:
Positive electrode active materials are described that have a very high specific discharge capacity upon cycling at room temperature and at a moderate discharge rate. Some materials of interest have the formula Li1+xNiαMnβCOγO2, where x ranges from about 0.05 to about 0.25, α ranges from about 0.1 to about 0.4, β ranges from about 0.4 to about 0.65, and γ ranges from about 0.05 to about 0.3. The materials can be coated with a metal fluoride to improve the performance of the materials especially upon cycling. Also, the coated materials can exhibit a very significant decrease in the irreversible capacity lose upon the first charge and discharge of the cell. Methods for producing these materials include, for example, a co-precipitation approach involving metal hydroxides and sol-gel approaches.
Abstract:
Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
Abstract:
Lithium rich and manganese rich lithium metal oxides are described that provide for excellent performance in lithium-based batteries. The specific compositions can be engineered within a specified range of compositions to provide desired performance characteristics. Selected compositions can provide high values of specific capacity with a reasonably high average voltage. Compositions of particular interest can be represented by the formula, xLi2MnO3.(1−x)LiNiu+ΔMnu−ΔCowAyO2. The compositions undergo significant first cycle irreversible changes, but the compositions cycle stably after the first cycle.
Abstract:
Batteries with high energy and high capacity are described that have a long cycle life upon cycling at a moderate discharge rate. Specifically, the batteries may have a room temperature fifth cycle discharge specific energy of at least about 175 Wh/kg discharged at a C/3 discharge rate from 4.2V to 2.5V. Additionally, the batteries can maintain at least about 70% discharge capacity at 1000 cycles relative to the fifth cycle, with the battery being discharged from 4.2V to 2.5V at a C/2 rate from the fifth cycle through the 1000th cycle. In some embodiment, the positive electrode of the battery comprises a lithium intercalation composition with optional metal fluoride coating. Stabilizing additive maybe added to the electrolyte of the battery to further improve the battery performance. The batteries are particularly suitable for use in electric vehicles.
Abstract:
Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical optical and electro-optical devices can be formed from the composites.
Abstract:
Positive electrode active materials are described that have a high tap density and high specific discharge capacity upon cycling at room temperature and at a moderate discharge rate. Some materials of interest have the formula Li1+xNiαMnβCoγO2, where x ranges from about 0.05 to about 0.25, α ranges from about 0.1 to about 0.4, β ranges from about 0.4 to about 0.65, and γ ranges from about 0.05 to about 0.3. The materials can be coated with a metal fluoride to improve the performance of the materials especially upon cycling. Also, the coated materials can exhibit a very significant decrease in the irreversible capacity lose upon the first charge and discharge of the battery.
Abstract:
A collection of nanoparticles of aluminum oxide have been produced by laser pyrolysis have a very narrow distribution of particle diameters. Preferably, the distribution of particle diameters effectively does not have a tail such that almost no particles have a diameter greater than about 4 times the average diameter. The pyrolysis preferably is performed by generating a molecular stream containing an aluminum precursor, an oxidizing agent and an infrared absorber. The pyrolysis can be performed with an infrared laser such as a CO2 laser.
Abstract:
Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
Abstract:
Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
Abstract:
Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.