摘要:
Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
摘要:
Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
摘要:
Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical optical and electro-optical devices can be formed from the composites.
摘要:
Hollow silica nanoparticles can have well defined non-porous shells with low shell fragmentation and good dispersability. These well defined hollow particles can be formed through the controlled oxidation of silicon nanoparticles in an organic solvent. The hollow nanoparticles can have a submicron secondary particle sizes. The hollow silica nanoparticles can be incorporated into polymer composites, such as low index-of-refraction composites, for appropriate applications.
摘要:
A collection of nanoparticles of aluminum oxide have been produced by laser pyrolysis have a very narrow distribution of particle diameters. Preferably, the distribution of particle diameters effectively does not have a tail such that almost no particles have a diameter greater than about 4 times the average diameter. The pyrolysis preferably is performed by generating a molecular stream containing an aluminum precursor, an oxidizing agent and an infrared absorber. The pyrolysis can be performed with an infrared laser such as a CO2 laser.
摘要:
Functional composite materials comprise elemental inorganic particles within an organic matrix. The elemental inorganic materials generally comprise elemental metal, elemental metalloid, alloys thereof, or mixtures thereof. In alternative or additional embodiments, the inorganic particles can comprise a metal oxide, a metalloid oxide, a combination thereof or a mixture thereof. The inorganic particles can have an average primary particle size of no more than abut 250 nm and a secondary particle size in a dispersion when blended with the organic matrix of no more than about 2 microns. The particles can be substantially unagglomerated within the composite. The organic binder can be a functional polymer such as a semiconducting polymer. The inorganic particles can be surface modified, such as with a moiety having an aromatic functional group for desirable interactions with a semiconducting polymer. Appropriate solution based methods can be used for forming the composite from dispersions of the particles. The composites can be processed into products, such as printed electronics devices.
摘要:
Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
摘要:
Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
摘要:
Collections of composite particles comprise inorganic particles and another composition, such as a polymer and/or a coating composition. In some embodiments, the composite particles have small average particle sizes, such as no more than about 10 microns or no more than about 2.5 microns. The composite particles can have selected particle architectures. The inorganic particles can have compositions selected for particular properties. The composite particles can be effective for printing applications, for the formation of optical coatings, and other desirable applications.
摘要:
Manganese oxide particles have been produced having an average diameter less than about 500 nm and a very narrow distribution of particle diameters. Methods are described for producing metal oxides by performing a reaction with an aerosol including a metal precursor. Heat treatments can be performed in an oxidizing environment to alter the properties of the manganese oxide particles.