Abstract:
Teachings presented herein provide a method and apparatus for processing input information bits for coding using a code, such that the length of the information word formed from the input information bits matches a fixed information word length defined by the code. In at least one embodiment, a coding circuit receives input information bits (and adds error protection bits as needed, to make the information word length match the fixed information word length. The method and apparatus contemplate generating the error protection bits by sub-coding a subset of the input information bits (e.g., parity bit generation), thereby providing extra protection for that subset. These teachings allow the same code to be used for coding feedback or other information, where the amount of information to be coded varies as a function of operating modes.
Abstract:
A method and system for probing in a wireless communication network are disclosed. According to one aspect, a method includes directing at least one low power node to transmit a probing signal, where the probing signal includes least one code. The method also includes receiving from a wireless terminal an indication of downlink channel quality. The channel quality is based on a power of the probing signal received by the wireless terminal. The method further includes selectively directing at least one of the at least one low power node to communicate with the wireless terminal. The selecting is based on the indication of downlink channel quality.
Abstract:
A method and apparatus for determining operating modes in a receiver is described herein. A delay searcher in the receiver detects a signal image in the received signal. When the receiver is a RAKE receiver, a plurality of RAKE fingers coherently combine time-shifted versions of the received signal at different delays. Alternatively, when the receiver is a chip equalization receiver, an FIR filter coherently pre-combines the signal images in the received signal. A processor determines delays. In particular, the processor generates a first signal quality metric for a single-delay receiver mode, and generates a second signal quality metric for a multi-delay receiver mode. Based on a comparison of the first and second signal quality metrics, the processor selects the single-delay or the multi-delay receiver mode for processing the signal image.
Abstract:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. After each stage of interference cancellation, interference characteristics change. An adaptive finger placement strategy is used in which after each stage of interference cancellation, finger delays and combining weights of the receiver are adapted to reflect the changed interference characteristics.
Abstract:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. The receiver performs code-averaged equalization and chip chip-level code-specific interference over-cancellation on the received signals. This can result in a unified interference cancellation processing, and can avoid cumbersome calculations of code cross correlations that is required in symbol-level interference cancellation. A symbol-level code-averaged desired signal add-back is performed to address the over-cancellation of some desired signals.
Abstract:
A block coding method and system for improving the reliability of Channel Quality Indicators (CQI) and antenna weight Indicators (AWI) reporting. A user terminal first generates 8-bit CQI and 2-bit AWI. A codeword generator produces a codeword responsive to these 10 CQI/AWI bits using a codebook or a generator matrix of a (20,10,6) code. The (20,10,6) code has a minimum Hamming distance of 6 The encoded codeword is transmitted to a receiver for decoding utilizing an identical (20,10,6) codebook.
Abstract:
In one of its aspects the technology disclosed herein concerns a method of operating a receiver. The method comprises performing symbol detection by (1) receiving a frequency-domain signal that comprises contribution from time-domain symbols transmitted from one or more transmit antennas; (2) generating a transformation matrix and a triangular matrix based on a frequency domain channel response; (3) using the transformation matrix to transform the received frequency-domain signal to obtain a transformed frequency-domain signal; and (4) performing symbol detection by performing plural stages of detection, each stage of detection using elements of the transformed frequency-domain received signal associated with the detection stage.
Abstract:
An adaptive transmission scheme provides multiple levels of adaptation. At a first level, a selection is made between a limited feedback or limited feedback scheme and a rich feedback scheme. At a second level of adaptation, a diversity mode is selected. Additional levels of adaptation could be employed.
Abstract:
With the asymmetric resource sharing disclosed herein, a base station transmits fewer information symbols at some transmission times to one or more mobile terminals than to other mobile terminals at other transmission times. After transmitting the information symbols, the base station receives channel estimates from the mobile terminals, which the base station then use to generate synthesized signals representing estimates of the signals received at the mobile terminals. The base station subsequently combines complementary pairs of the synthesized signals to generate combined signals and transmits at least one of the combined signals to implement at least one virtual antenna for at least one of the mobile terminals.
Abstract:
The technology comprises method(s) and apparatus for operating a telecommunications system. In its basic form the method comprises providing plural channelization codes for potential use by an uplink receiver; using unused channelization codes of the plural codes to generate an estimate of an impairment covariance matrix; and using the estimate of the impairment covariance matrix to form a processing parameter. For example, the processing parameter can be one or more weight values which, in turn, are can be used for generating a combined output signal.