Abstract:
A wireless communication device (UE) includes a cellular processor configured to conduct wireless communications according to a first radio access technology (RAT) in a first frequency band and in a second frequency band, wherein the first RAT is a cellular RAT, the first frequency band is in an unlicensed spectrum, and the second frequency band is in a licensed spectrum. In some embodiments, the apparatus includes a wireless local area network (WLAN) processor configured to conduct wireless communications according to a second RAT in the first frequency band. In some embodiments, the cellular processor and the WLAN processor are configured to couple to a common antenna for communications in the first frequency band. In some embodiments, the cellular processor may notify the WLAN processor when it is scanning and/or when it is assigned secondary component carriers in the first frequency band. In some embodiments, the WLAN processor may notify the cellular processor when it is transmitting. In some embodiments, the WLAN processor and/or the cellular processor may perform one or more actions in response to such notifications to improve coexistence in the first frequency band.
Abstract:
A wireless communication system is presented for robust mobility management in a HetNet communication system. A source cell can prepare a macro cell and a target small cell as handover candidates during handover decision making and/or preparation. The mobile device is informed about the prepared macro cell and target small cell using radio resource control (RRC) messaging. After receiving a handover command or detecting radio frequency (RF) loss, the mobile device can try to connect with the target small cell. If the mobile device is unable to connect to the target small cell, the UE can fall back and connect to the macro cell.
Abstract:
The disclosure describes procedures for allocating network resources for a mobile device communicating within a Long Term Evolution (LTE) network. The mobile device can be configured to decode a physical downlink shared channel (PDSCH), acquire first and second physical downlink control channel (PDCCH) decode indicators from a payload of the same PDSCH communication, decode a PDCCH for downlink control information (DCI) associated with a first application data type based on the first PDCCH decode indicator a second application data type based on the second PDCCH decode indicator. The first PDCCH decode indicator can identify an upcoming LTE subframe where the mobile device is required to decode the PDCCH for DCI associated VoLTE resource assignments and the second PDCCH decode indicator can identify an upcoming LTE subframe where the mobile device is required to decode the PDCCH for DCI associated with high bandwidth best effort (BE) data resource assignments.
Abstract:
This disclosure relates to techniques for supporting cross functional signaling for device-to-device wireless communication, such as an off grid radio system. According to some embodiments, a first wireless device may initiate, modify, and/or close a device-to-device wireless communication session with a second wireless device using session management signaling associated with a protocol layer (possibly a higher layer, such as a layer supported by an application processor) of the first wireless device. The wireless device may provide indications of session initiation, modification, and/or closing from the protocol layer used to exchange the session management signaling to another protocol layer (possibly a lower layer, such as a layer supported by a baseband processor) of the first wireless device.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform substantially concurrent communications with a next generation network node and a legacy network node. The wireless device may be configured to stablish a first wireless link with a first cell according to a RAT, where the first cell operates in a first system bandwidth and establish a second wireless link with a second cell according to a RAT, where the second cell operates in a second system bandwidth. Further, the wireless device may be configured to perform uplink activity for both the first RAT and the second RAT by TDM uplink data for the first RAT and uplink data for the second RAT if uplink activity is scheduled according to both the first RAT and the second RAT.
Abstract:
This disclosure relates to performing cellular communication in unlicensed spectrum using a flexible slot structure. A cellular base station may perform a listen-before-talk procedure, and may transmit a reservation frame when the listen-before-talk procedure is successful. The reservation frame may reserve a wireless medium for a transmit opportunity. Transmission slots may be scheduled for communication with one or more wireless devices during the transmit opportunity. The transmission slots may be selected from multiple possible uplink transmission slot types and multiple possible downlink transmission slot types. Indications of the scheduled transmission slots, including indications of slot types of the scheduled transmission slots, may be provided to the wireless devices. Wireless communication may be performed between the cellular base station and the wireless devices according to the scheduled transmission slots.
Abstract:
A wireless communication system is presented for robust mobility management in a HetNet communication system. A source cell can prepare a macro cell and a target small cell as handover candidates during handover decision making and/or preparation. The mobile device is informed about the prepared macro cell and target small cell using radio resource control (RRC) messaging. After receiving a handover command or detecting radio frequency (RF) loss, the mobile device can try to connect with the target small cell. If the mobile device is unable to connect to the target small cell, the UE can fall back and connect to the macro cell.
Abstract:
This disclosure relates to reducing power consumption for cellular communication based on transport block size in combination with channel condition measurements for applications with certain application characteristics. In one embodiment, a transport block size for use for uplink communication with a base station by a wireless device may be selected. The transport block size may provide more robust communication characteristics than required for current channel conditions. The transport block size may be selected based on application characteristics of an application performing the uplink communication. A transmit power for the wireless device to use for the uplink communication may be selected based on the transport block size providing more robust communication characteristics than required for the current channel conditions. In particular, transport power selection may be biased towards a reduced transmit power based on the transport block size providing more robust communication characteristics than required for the current channel conditions.
Abstract:
The disclosure describes apparatus and methods for including downlink control information (DCI) normally associated with the physical downlink control channel (PDCCH) within a physical downlink shared channel (PDSCH) to reduce power consumption for a user equipment (UE) operating in a Long Term Evolution (LTE) radio resource control (RRC) connected mode. An enhanced NodeB base station can be configured to generate DCI associated with a future downlink resource assignment or uplink grant for the UE on the PDSCH or a physical uplink shared channel (PUSCH), and then include this DCI within the payload of a current PDSCH communication, such that the PDCCH does not need to be decoded by the UE during a time when DCI for future PDSCH communication is included within a current PDSCH.
Abstract:
A method for managing radio frequency (RF) chains in a carrier aggregation capable wireless communication device is provided. The method can include a wireless communication device using a first RF chain associated with a first component carrier and a second RF chain associated with a second component carrier to support a connection to a network. The method can further include the wireless communication device formatting a deactivation message configured to trigger deactivation of the second component carrier. The method can additionally include the wireless communication device sending the deactivation message to the network to trigger deactivation of the second component carrier. The method can also include the wireless communication device discontinuing usage of the second RF chain to support the connection to the network via the second component carrier after sending the deactivation message.