Abstract:
Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
Abstract:
Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
Abstract:
A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets Si for each codeword ci of the codebook C. Each codeword subset Si defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset Si are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.
Abstract:
In some embodiments of the invention, OFDM symbols are transmitted as a plurality of clusters. A cluster includes a plurality of OFDM sub-carriers in frequency, over a plurality of OFDM symbol durations in time. Each cluster includes data as well as pilot information as a reference signal for channel estimation. In some embodiments, a plurality of clusters collectively occupy the available sub-carrier set in the frequency domain that is used for transmission. In some embodiments of the invention data and/or pilots are spread within each cluster using code division multiplexing (CDM). In some embodiments pilots and data are separated by distributing data on a particular number of the plurality of OFDM symbol durations and pilots on a remainder of the OFDM symbol durations. CDM spreading can be performed in time and/or frequency directions.
Abstract:
Physical layer structures and access schemes for use in such networks are described and in particular initial access channel (IACH) structures are proposed. A spectrum efficient downlink (DL) IACH design supports different types of User Equipment (UE) capabilities and different system bandwidths. An IACH includes the synchronization channel (SCH) and broadcast-control channel (BCH). A non-uniform SCH for all system bandwidths is provided, as well as scalable bandwidth BCH depending on system bandwidth. An initial access procedure is provided, as well as an access procedure.
Abstract:
Neighbor cell hearability can be improved by including an additional reference signal that can be detected at a low sensitivity and a low signal-to-noise ratio, by introducing non-unity frequency reuse for the signals used for a time difference of arrival (TDOA) measurement, e.g., orthogonality of signals transmitted from the serving cell sites and the various neighbor cell sites. The new reference signal, called the TDOA-RS, is proposed to improve the hearability of neighbor cells in a cellular network that deploys 3GPP EUTRAN (LTE) system, and the TDOA-RS can be transmitted in any resource blocks (RB) for PDSCH and/or MBSFN subframe, regardless of whether the latter is on a carrier supporting both PMCH and PDSCH or not. Besides the additional TDOA-RS reference signal, an additional synchronization signal (TDOA-sync) may also be included to improve the hearability of neighbor cells.
Abstract:
A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
Abstract:
Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
Abstract:
Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
Abstract:
A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets S1 for each codeword c1 of the codebook C. Each codeword subset S1 defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset S1 are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.