Abstract:
Methods and apparatus for registering and handling access violations of host memory. In one embodiment, a peripheral processor receives one or more window registers defining an extent of address space accessible from a host processor; responsive to an attempt to access an extent of address space outside of the extent of accessible address space, generates an error message; stores the error message within a violation register; and resumes operation of the peripheral processor upon clearance of the stored error message.
Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for an inter-processor communication (IPC) link between two (or more) independently operable processors. In one aspect, the IPC protocol is based on a “shared” memory interface for run-time processing (i.e., the independently operable processors each share (either virtually or physically) a common memory interface). In another aspect, the IPC communication link is configured to support a host driven boot protocol used during a boot sequence to establish a basic communication path between the peripheral and the host processors. Various other embodiments described herein include sleep procedures (as defined separately for the host and peripheral processors), and error handling.
Abstract:
A method includes inter-chip data communications between a power-managed integrated circuit (IC) and a peer IC. The peer IC generates a data frame and prepends a discardable preamble of a predefined size to a payload of the data frame. The predefined size is a size not less than a size of data discarded by the power-managed IC upon the power-managed IC receiving a data frame while in a low-power state. The peer IC transmits the data frame to the power-managed IC. The power-managed IC, while in a low-power state, may receive the data frame from the peer IC and in response to receiving the data frame, begin exiting the low-power state. The power-managed IC, while exiting the low-power state, may discard a portion of the data frame such as for example, some or all of the discardable preamble, without discarding payload.