Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include antennas. The antennas may include phased antenna arrays for handling millimeter wave signals. Antennas may be located in antenna signal paths. The antenna signal paths may include adjustable components such as adjustable filters, adjustable gain amplifiers, and adjustable phase shifters. Circuitry may be incorporated into an electronic device to facilitate wireless self-testing operations. Wireless self-testing may involve use of one antenna to transmit an over-the-air antenna test signal that is received by another antenna. The circuitry that facilitates the wireless self-testing operations may include couplers, adjustable switches for temporarily shorting antenna signal paths together, mixers for mixing down radio-frequency signals to allow digitization with analog-to-digital converters, and other circuitry for supporting self-testing operations.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more dual-frequency dual-polarization patch antennas. Each patch antenna may have a patch antenna resonating element that lies in a plane and a ground that lies in a different parallel plane. The patch antenna resonating element may have a first feed located along a first central axis and a second feed located along a second central axis that is perpendicular to the first central axis. The patch antenna resonating element may be rectangular, may be oval, or may have other shapes. A shorting pin may be located at an intersecting point between the first and second axes. The patch antennas may be used in beam steering arrays. The patch antennas may be used for wireless power transfer at microwave frequencies or other frequencies and may be used to support millimeter wave communications.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and first and second antennas. An electronic device may include a housing. The first antenna may be located at an upper end of the housing and the second antenna may be located at a lower end of the housing. A peripheral conductive member may run around the edges of the housing and may be used in forming the first and second antennas. The radio-frequency transceiver circuitry may have a transmit-receive port and a receive port. Switching circuitry may connect the first antenna to the transmit-receive port and the second antenna to the receiver port or may connect the first antenna to the receive port and the second antenna to the transmit-receive port.
Abstract:
An electronic device having at least one operational setting, such as a power setting, with at least a first state and a second state. The electronic device may also include an access controller that can receive state data and authorization data from an external source such as a remote control. The access controller may enable a state of the operational setting upon receipt of proper authorization data received from or related to the output from at least one biometric sensor associated with the remote control.
Abstract:
A method implemented on a mobile device that starts by receiving a temperature reading from a sensor included on the mobile device. The temperature reading is compared to a threshold temperature and a power cap is set when the temperature reading is greater than the threshold temperature. The power cap is a maximum transmission power of the mobile device. The method then determines if the mobile device is transmitting a critical message. The power cap is released for a period of time if the power cap is set and the mobile device is determined to be sending a critical message. Other embodiments are also described.
Abstract:
To establish a connection between electronic devices some embodiments include a system, method, and/or computer program product for password pairing user-interface devices in wireless proximity. A first electronic device (e.g., a keyboard) transmits an advertising packet, and receives a password, where the password has been generated by a second electronic device (e.g., a smartphone) and the password enables pairing between the first electronic device and the second electronic device. The first electronic device transmits a message including the password to the second electronic device, where the second electronic device is within a predefined range of the first electronic device. In some embodiments the first device receives a command from the second electronic device to transition to a discovery mode, transitions to the discovery mode, and transmits a confirmation to the second electronic device that the first device is in the discovery mode.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include phased antenna arrays each of which includes multiple antenna elements. Phased antenna arrays may be mounted along edges of a housing for the electronic device, behind a dielectric window such as a dielectric logo window in the housing, in alignment with dielectric housing portions at corners of the housing, or elsewhere in the electronic device. A phased antenna array may include arrays of patch antenna elements on dielectric layers separated by a ground layer. A baseband processor may distribute wireless signals to the phased antenna arrays at intermediate frequencies over intermediate frequency signal paths. Transceiver circuits at the phased antenna arrays may include upconverters and downconverters coupled to the intermediate frequency signal paths.
Abstract:
An electronic device receives data associated with at least one biometric detected by a sensor of a remote control device. The biometric may be at least one fingerprint, retinal scan, facial image, and/or any other biometric. A profile for a user associated with the data is determined out of a number of possible profiles based on the data. The electronic device is then configured in one or more ways according to the determined user profile. Such configuration may include any way that the electronic device may be personalized and/or otherwise altered. In this way, an electronic device may provide a personalized experience for a number of different users without burdening and/or annoying the respective users.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An electronic device may include a display mounted within a housing. A peripheral conductive member may run around the edges of the display and housing. Dielectric-filled gaps may divide the peripheral conductive member into individual segments. A ground plane may be formed within the housing from conductive housing structures, printed circuit boards, and other conductive elements. The ground plane and the segments of the peripheral conductive member may form antennas in upper and lower portions of the housing. The radio-frequency transceiver circuitry may implement receiver diversity using both the upper and lower antennas. The lower antenna may be used in transmitting signals. The upper antenna may be tuned using a tunable matching circuit.
Abstract:
This application relates to systems, methods, and apparatus for testing operability of a mobile device with a reader device. In some embodiments, a testing system is set forth for automatically placing the mobile device proximate to the reader device in order to initiate a wireless transaction between the mobile device and the reader device. Depending on whether the mobile device is determined to be operable with the reader device, the testing system can automatically place the mobile device proximate to another reader device for testing. In this way, reductions in testing time can be manifested as a result of automating the testing process.