Abstract:
A display device may include a plurality of pixels, a plurality of source lines that may provide a plurality of data line signals to the plurality of pixels, a plurality of gate lines that may provide a plurality of gate signals to a plurality of switches associated with the plurality of pixels, and a plurality of voltage gate lines disposed parallel to the plurality of source lines and coupled to the plurality of gate lines at a plurality of cross point nodes. The plurality of cross point nodes are positioned in a pseudo random order across the display device.
Abstract:
An electronic device display may have a color filter layer, a thin-film-transistor layer, and a layer of liquid crystal material. The display may have a display cover layer such as a layer of glass or plastic. Adhesive may be used to attach the upper polarizer to the display cover layer. The thin-film transistor layer may have a substrate with upper and lower surfaces. Thin-film-transistor circuitry may be formed on the upper surface. A display driver integrated circuit may be mounted to the lower surface or a flexible printed circuit and may be coupled to the thin-film-transistor circuitry using wire bonding wires. Through vias that are formed through the thin-film-transistor layer substrate may be used in coupling the thin-film-transistor circuitry to the display driver integrated circuit.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
A display may store extended display identification data for communicating the capabilities of the display to a source device such as a graphics processing unit. The extended display identification data may include a red primary color value, a green primary color value, and a blue primary color value. The primary color values in the extended display identification data may be determined during manufacturing. For example, a light sensor may measure the native primary colors of the display, and calibration computing equipment may determine if the native primary colors of the display are within a target color gamut. If the native primary colors of the display are outside of the target color gamut by an amount larger than a threshold, the primary color values in the extended display identification data may be adjusted to account for the color variation.
Abstract:
Liquid crystal display (LCD) touch screens integrate touch sensing elements with display circuitry and may include in-plane-switching (IPS) LCDs. A method of operating the integrated touch sensing elements with the display circuitry includes dividing touch-sensing circuitry of the touch screen into a plurality of drive segments, each drive segment overlapping one or more display rows; updating the display at a predetermined refresh rate; stimulating the plurality of drive segments at a predetermined scan rate; and changing the sequence of stimulating the plurality of drive segments as required to prevent simultaneously stimulating a drive segment that overlaps a display row currently being updated.
Abstract:
A display has an array of display pixels formed from display layers such as one or more polarizer layers, a substrate on which an array of display pixel elements such as color filter elements and downconverter elements are formed, a liquid crystal layer, and a thin-film transistor layer that includes display pixel electrodes and display pixel thin-film transistors for driving control signals onto the display pixel electrodes to modulate light passing through the display pixels. A light source such as one or more laser diodes or light-emitting diodes may be used to generate light for the display. The light may be launched into the edge of a polymer layer or other light guide plate structure. A light guide plate may include phase-matched structures such as holographically recorded gratings or photonic lattices that direct the light upwards through the array of display pixels.
Abstract:
Liquid crystal display (LCD) touch screens integrate touch sensing elements with display circuitry and may include in-plane-switching (IPS) LCDs. A method of operating the integrated touch sensing elements with the display circuitry includes dividing touch-sensing circuitry of the touch screen into a plurality of drive segments, each drive segment overlapping one or more display rows; updating the display at a predetermined refresh rate; stimulating the plurality of drive segments at a predetermined scan rate; and changing the sequence of stimulating the plurality of drive segments as required to prevent simultaneously stimulating a drive segment that overlaps a display row currently being updated.
Abstract:
A method for testing photosensitivity of an electronic display module, such as a liquid crystal display module, is provided. In one embodiment, a method includes exposing a display module to light at a first intensity and measuring an amount of light transmitted through the display module. The method may also include exposing the display module to light at a second intensity and measuring an amount of that light transmitted through the display module. The measured amounts may then be compared to determine an optical property, such as photosensitivity, of the display panel. Various other methods, systems, and manufactures are also disclosed.
Abstract:
An electronic device may include a display. The display may be formed by an array of light-emitting diodes mounted to the surface of a substrate. The substrate may be a silicon substrate. Circuitry may be located in spaces between the light-emitting diodes. Circuitry may also be located on the rear surface of the silicon substrate and may be coupled to the array of light-emitting diodes using through-silicon vias. The circuitry may include integrated circuits and other components that are attached to the substrate and may include transistors and other circuitry formed within the silicon substrate. Touch sensor electrodes, light sensors, and other components may be located in the spaces between the light-emitting diodes. The substrate may be formed from a transparent material that allows image light to reach a lens and image sensor mounted below the substrate.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.