Abstract:
In some embodiments, a user equipment (UE) and base station implement improved communication methods which enable a UE to operate according to a sub-frame allocation based on its current power state. The UE may transmit information including a maximum number of uplink (UL) sub-frames the UE can transmit in an allocation period and receive, from a base station, a first sub-frame allocation based on at least the first information. In embodiments, the UE may merge an un-allocated UL sub-frame's downlink association set with a next closest allocated UL sub-frame's downlink association set.
Abstract:
Methods and apparatus for adaptively adjusting receiver operation during non-continuous (e.g., discontinuous) reception. In one exemplary embodiment, a user device such as a User Equipment (UE) adaptively adjusts its reception mode based on a determined actual error. The reception mode is selected so as to improve reception performance, while still minimizing overall power consumption.
Abstract:
Methods and apparatus for adaptively adjusting receiver operation during non-continuous (e.g., discontinuous) reception. In one exemplary embodiment, a user device such as a User Equipment (UE) adaptively adjusts its reception mode based on a determined actual error. The reception mode is selected so as to improve reception performance, while still minimizing overall power consumption.
Abstract:
A method, system, and apparatus are described for managing a device in a mixed wireless communication system. A device may decide to scan or not scan for a cell based on (or at least on) updating information. The updating information may be used together or individually. The updating information may be maintaining a time window in conjunction with a device's motion status, maintaining a list that tracks cell identity in areas of non-service, or utilizing network deployment information.
Abstract:
A user equipment (UE) device may perform uplink (UL) data communication using a first radio access technology (RAT) while performing an UL voice call communication using a second RAT. The UL data communication may be supported by a first subscriber identity module (SIM) and the UL packet switched voice call communication may be supported by a second SIM. The UL voice call communication may be a packet switched communication. The communications may be performed by a radio(s) of the UE. The radio(s) may include shared physical layer resources that are shared between the UL data and UL voice communications. The UE may also include a single transmitter that may be shared between the UL data and UL packet voice communications and the UL data communication may use a first portion of the single transmitter's TTI and the UL voice communication may use a second portion of the single transmitter's TTI.
Abstract:
Operating a user equipment (UE) which comprises a first radio that is configured to operate according to a first radio access technology (RAT) and a second RAT. The UE may receive a request to perform a tune away operation for the second RAT while performing measurement for the first RAT (e.g., intra-cell measurement, inter-cell measurement, and/or inter-RAT measurement). Instead of waiting to complete the measurement of the first RAT, the UE may tune the radio to a frequency of the second RAT to perform the tune away operation (e.g., page decoding) for the second RAT. After completing the tune away operation of the second RAT, the UE may tune the radio back to a frequency corresponding to the first RAT in order to continue the measurement operations of the first RAT.
Abstract:
Methods, apparatuses and computer readable media are described that manage transmit power levels for a wireless device connected to a network access system of a wireless network. Processing circuitry in the wireless device obtains a target average transmit power level. Based on estimates of an actual average transmit power level for a sliding window of a past time period and the target average transmit power level, the processing circuitry determines a target transmit power level, a duty cycle percentage, and a transmit pattern of transmit on frames and transmit off frames for a future time period. The processing circuitry sends to the access network system signaling messages indicating non-zero valued buffer status reports for the transmit on frames and zero valued buffer status reports for the transmit off frames. Non-zero values correspond to actual amounts of pending uplink data, while zero values are sent irrespective of actual uplink buffer status.
Abstract:
A method for adaptively disabling receiver diversity is provided. The method can include a wireless communication device determining an active data traffic pattern; defining a threshold channel quality metric based at least in part on a threshold channel quality needed to support a threshold quality of service for the active data traffic pattern; comparing a measured channel quality to the threshold channel quality metric; and disabling receiver diversity in an instance in which the measured channel quality metric satisfies the threshold channel quality metric.
Abstract:
Performing detection of a synchronization beacon. The UE may include a first radio which supports, e.g., simultaneously, a first radio access technology (RAT) and a second RAT. The UE may perform transmission according to the first RAT on the first radio with a base station. The UE may receive a request to perform a tune-away to detect a synchronization beacon on the second RAT. The synchronization beacon may repetitively occur in successive first time periods. The UE may repeatedly perform a search for the synchronization beacon in different sub-portions over successive first time periods. The search may be repeatedly performed until the synchronization beacon is located in a respective sub-portion of one of the successive time periods.
Abstract:
Performing data communications by a Dual SIM Dual Active (DSDA) user equipment (UE), while simultaneously conducting two concurrent voice calls. The UE may receive a request to perform data communications while conducting a first voice call on a first radio and concurrently conducting a second voice call on a second radio. The UE may then determine whether one of the voice calls is currently on hold. The UE may perform the data communications using the radio on which the held call is being conducted. The UE may therefore dynamically select available slots from the first radio and the second radio for performing the data communication, based on which of the first radio and the second radio has a voice call that is currently on hold. In some embodiments, the data communications may be performed using a Long Term Evolution (LTE) protocol stack.