Abstract:
In a multi-PHY, low power and lossy network comprising a plurality of nodes, a sender determines that a dwell time threshold limit for transmission of data will be exceeded by transmission of the data over a first network interface or that the recipient is unknown. The sender determines transmission parameters for the transmission of the data over the first network interface and transmits the transmission parameters to a receiver device over a second network interface that is different than the first network interface. The sender determines a channel on the first network interface for transmission of the data and transmits the determined channel with the transmission parameters to the receiver, or the receiver determines the channel on the first network interface for transmission of the data and transmits an indication of the determined channel to the sender in response to receiving the transmission parameters.
Abstract:
In one embodiment, a plurality of time-based events is determined in a computer network. Messages are transmitted in the computer network in accordance with the plurality of time-based events. A transmission data rate of the transmitted messages is determined. Then, the transmission data rate is adjusted according to the plurality of time-based events.
Abstract:
In one embodiment, a device receives a destination unreachable message originated by a particular node along a first source route, the message carrying an encapsulated packet as received by the particular node. In response, the device may determine a failed link along the first source route based on a tunnel header and the particular node. Once determining an alternate source route without the failed link, the device may re-encapsulate and re-transmit the original packet on an alternate source route with a new tunnel header indicating the alternate source route (e.g., and a new hop limit count for the tunnel header and an adjusted hop limit count in the original packet).
Abstract:
In one embodiment, a targeted node in a computer network receives a probe generation request (PGR), and in response, generates a link-local multicast PGR (PGR-Local) carrying instructions for generating probes based on the PGR. The targeted node then transmits the PGR-Local to neighbors of the targeted node to cause one or more of the neighbors to generate and transmit probes to a collection device in the computer network according to the PGR-Local instructions. In another embodiment, a particular node in a computer network receives a link-local multicast probe generation request (PGR-Local) from a targeted node in the computer network, the targeted node having received the PGR-Local from a remote device, and determines how to generate probes based on instructions carried within the PGR-Local before sending one or more probes to a collection device in the computer network according to the PGR-Local instructions.
Abstract:
In one embodiment, a device maintains a predetermined number of high-priority subcarriers for use in communicating high-priority data frames and a predetermined number of low-priority subcarriers for use in communicating low-priority data frames. A data frame is received and a data frame priority is determined for the data frame. If the data frame is determined to be a low-priority data frame, a minimum number of subcarriers, from the low-priority subcarriers, required for communication of the data frame is determined and the data frame is communicated using the minimum number of subcarriers. If the data frame is determined to be a high-priority data frame, a maximum number of subcarriers available, including the high-priority subcarriers and the low-priority subcarriers, is determined and the data frame is communicated using the maximum number of subcarriers.
Abstract:
In one embodiment, a device identifies inter-personal area network (PAN) traffic between a first PAN and a second PAN. The device identifies a network node in the first PAN associated with the inter-PAN traffic and determines that the network node should join the second PAN. The device causes the network node to join the second PAN, in response to determining that the network node should join the second PAN.
Abstract:
In one embodiment, a time at which a first device in a frequency-hopping communication network is expected to transmit a data message is determined. A first schedule is then generated based on the determined time, and the first schedule is overlaid on a frequency-hopping schedule for a second device in the network. The first schedule defines a first timeslot during which the second device listens for the data message, while the frequency-hopping schedule defines second timeslots during which the second device listens for data messages from other devices in the network. Notably, a duration of the first timeslot is greater than respective durations of the second timeslots.
Abstract:
In one embodiment, a control loop control using a broadcast channel may be used to communicate with a node under attack. A management device may receive data indicating that one or more nodes in a computer network are under attack. The management device may then determine that one or more intermediate nodes are in proximity to the one or more nodes under attack, and communicate an attack-mitigation packet to the one or more nodes under attack by using the one or more intermediate nodes to relay the attack-mitigation packet to the one or more nodes under attack.
Abstract:
In one embodiment, a device in a network determines that a particular packet flow in the network is sensitive to packet reordering. The device determines whether a particular packet of the packet flow is to be routed differently than an immediately prior packet in the packet flow, in response to determining that the particular packet flow is sensitive to reordering. The device marks the particular packet as taking a different route than the immediately prior packet in the packet flow, prior to forwarding the marked packet and in response to determining that the particular packet is to be routed differently than the immediately prior packet in the packet flow.
Abstract:
In one embodiment, a device in a network detects a power outage event. The device monitors one or more operational properties of the device, in response to detecting the power outage event. The device determines whether to initiate a traffic control mechanism based on the one or more monitored operational properties of the device, according to a power outage traffic control policy. The device causes one or more nodes in the network that send traffic to the device to regulate the traffic sent to the device, in response to a determination that the traffic control mechanism should be initiated.