Abstract:
A method for monitoring autoregulation includes, using a processor, receiving a blood pressure signal an oxygen saturation signal, and a regional oxygen saturation signal from a patient. The method also includes normalizing the regional oxygen saturation signal to correct for variation in the oxygen saturation signal based on a relationship between the oxygen saturation signal and the regional oxygen saturation signal. The method further includes determining a linear correlation between the blood pressure signal and the normalized regional oxygen saturation signal. The method still further includes providing a signal indicative of the patient's autoregulation status to an output device based on the linear correlation.
Abstract:
A system for continuous non-invasive blood pressure monitoring may include processing circuitry configured to determine calibration data for a continuous non-invasive blood pressure model at a calibration point, receive, from an oxygen saturation sensing device, a PPG signal at a particular time subsequent to the calibration point, derive values of the set of metrics for the patient from the PPG signal, and determine, using the continuous non-invasive blood pressure model and based at least in part on inputting the calibration data determined at the calibration point, the values of the set of metrics, and an elapsed time at the particular time since the calibration point into the continuous non-invasive blood pressure model, a blood pressure of the patient at the particular time.
Abstract:
A system for monitoring autoregulation includes an oxygen saturation sensor configured to obtain an oxygen saturation signal indicative of an oxygen saturation of a patient. The system also includes a controller having a processor configured to receive a blood pressure signal indicative of a blood pressure of the patient and the oxygen saturation signal, determine a change in the oxygen saturation signal and a change in the blood pressure signal over a period of time, and provide an indication that the patient's autoregulation is intact if the oxygen saturation changes by more than an oxygen saturation threshold and if the blood pressure changes by less than a blood pressure threshold during the period of time.
Abstract:
A system for monitoring autoregulation includes an oxygen saturation sensor configured to obtain an oxygen saturation signal indicative of an oxygen saturation of a patient. The system also includes a controller having a processor configured to receive a blood pressure signal indicative of a blood pressure of the patient and the oxygen saturation signal, determine a change in the oxygen saturation signal and a change in the blood pressure signal over a period of time, and provide an indication that the patient's autoregulation is intact if the oxygen saturation changes by more than an oxygen saturation threshold and if the blood pressure changes by less than a blood pressure threshold during the period of time.
Abstract:
In some examples, devices, systems, and techniques are configured to compensate for changes in sensed blood pressure due to issues such as blood pressure sensor movement. For example, processing circuitry of a device may determine a difference value between a first blood pressure value representative of a blood pressure at a first time and a second blood pressure value representative of the blood pressure at a second time. Responsive to determining that the difference value is greater than or equal to a threshold value, the processing circuitry may generate updated blood pressure values by applying an offset value to the second blood pressure value and subsequently received blood pressure values that compensates for the difference value between the first blood pressure value and the second blood pressure value.
Abstract:
A system configured to monitor autoregulation includes a medical sensor configured to be applied to a patient and to generate a regional oxygen saturation signal. The system includes a controller having a processor configured to receive the regional oxygen saturation signal and a blood pressure signal and to determine a cerebral oximetry index (COx) based on the blood pressure signal and the regional oxygen saturation signal. The processor is also configured to apply a data clustering algorithm to cluster COx data points over a range of blood pressures, identify a first cluster of COx data points that corresponds to an intact autoregulation zone for the patient, and provide a first output indicative of the intact autoregulation zone for the patient.
Abstract:
In some examples, a device includes processing circuitry configured to receive first and second signals indicative of first and second physiological parameters and determine a trendline function based on values of first and second physiological parameters. The processing circuitry is further configured to determine transformed values of the first physiological parameter based on the trendline function. The processing circuitry is configured to determine correlation coefficient values for the transformed values of the first physiological parameter and the values of the second physiological parameter. The processing circuitry is further configured to determine a limit of autoregulation of the patient based on the correlation coefficient values. The processing circuitry is configured to determine an autoregulation status based on the estimate of the limit of autoregulation and output, for display, an indication of the autoregulation status.
Abstract:
A method for monitoring autoregulation includes, using a processor, receiving a blood pressure signal, a regional oxygen saturation signal, and a blood volume signal from a patient. The method also includes determining a first linear correlation between the blood pressure signal and the regional oxygen saturation signal and determining a second linear correlation between the blood pressure signal and the blood volume signal. The method also includes determining a confidence level associated with the first linear correlation based at least in part on the second linear correlation and providing a signal indicative of the patient's autoregulation status to an output device based on the linear correlation and the confidence level.
Abstract:
A method for monitoring autoregulation includes receiving a blood pressure signal and a regional oxygen saturation signal from a patient. The method also includes determining one or more pairs of linear correlation lines between the blood pressure signal and the regional oxygen saturation signal based on one or more bins. Each of the one or more bins includes one or more regional oxygen saturation values derived from the regional oxygen saturation signal. The method also includes determining a value indicative of the patient's autoregulation status based on a first pair of linear correlation lines selected from the one or more pairs of linear correlation lines and providing a signal indicative of the patient's autoregulation status to an output device.