摘要:
A system and method of obtaining perfusion data for cerebral tissue is described. The system includes a C-arm X-ray device and a computing system configured to obtain sets of rotational projection X-ray data suitable for reconstructing 3D voxel data sets. A first data set is obtained of the patient, and then contrast material is injected into the vascular system to obtain a second 1 data set. A first voxel data set is subtracted from the second voxel data set, and the resultant data set is processed so as to segment the contrast-enhanced vasculature from the remaining data. The segmented voxels are subtracted from the resultant voxel data set, so as to yield a functional data set representing the difference between the attenuation of the tissues after administering contrast agent and the tissues prior to administering the contrast agent, without the contrast enhanced vasculature. The attenuation of the functional data set represents the perfusion or cerebral blood volume (CBV).
摘要:
A system and method provide an optimized workflow and a dedicated user interface for image visualizations that facilitate medical diagnosis. Image data may be acquired via an imaging procedure at a remote medical facility. A physician may review the images on a display and mark-up/modify the images via the interface to create user-defined data. The image and user-defined data may be transmitted to a service provider. At the service provider, a software technician may generate a medical simulation using the image and user-defined data. The medical simulation may simulate actual conditions within the patient. Subsequently, the simulation results may be transferred to, or otherwise remotely accessed via a network from, the remote medical facility. As a result, medical treatment provided by remote facilities, which may only have limited resources in terms of personnel and equipment, may be enhanced and inefficiencies associated with the generation of medical simulations may be alleviated.
摘要:
A method is provided for a workflow for cardiovascular intervention that provides online monitoring and therapy control of the procedure. A series of steps are provided utilizing an imaging technology in combination with a therapeutic device to optimize the reliability of the treatment and minimize the negative effects on the patient. In generally, the method steps include: positioning the therapeutic device, performing the therapeutic procedure while imaging the therapeutic device, providing a low pressure inflation of the therapeutic device, imaging the results of the therapeutic procedure, and assessing the result of the therapeutic procedure. If the assessment reveals that the therapeutic procedure result is not optimal, the therapeutic procedure is performed again and the steps thereafter are performed again.
摘要:
The invention relates to a device and a method for intraluminal imaging. The device features an imaging instrument and a transport unit, with which the imaging instrument is moved in a lumen at a defined speed over a defined distance. The device further features a rigid, i.e. mechanically-stable singly or multiply curved guide pipe, which has an internal diameter matched to the external diameter of the imaging instrument to accommodate and guide the imaging instrument and is made from a material which is transparent for the radiation or to the waves used in imaging. The guide pipe features at least one marking detectable with the imaging at a known position on the guide pipe and is mechanically connectable to the transport unit. The device and the method make it possible in a simple manner to record a 3D image data set from the intraluminal recorded 2D sectional images.
摘要:
The invention relates to a method for generating an image using optical coherence tomography, with a control device controlling the operation of an image generation device and a rinsing device automatically according to a predetermined program.
摘要:
A method for planning treatment of a stenosis in a vascular segment includes providing a geometric description of the vascular segment on a computer and determining a course of a hemodynamic parameter of the vascular segment along the vascular segment based on the geometric description provided by the computer. The computer calculates a mathematical derivative of the hemodynamic parameter over the length of the vascular segment along the vascular segment. At least one length section is specified for the vascular segment, and a value of the hemodynamic parameter in a distal end region of the vascular segment is simulated for a treatment device introduced virtually into the specified length section as a function of the mathematical derivative. The treatment of the stenosis including the introduction of the treatment device into the specified length section is planned as a function of the simulated value for the hemodynamic parameter.
摘要:
Systems and methods are provided for evaluating the complexity of a stenosis or a section of a vessel. At least one image of the stenosis or the section of the vessel is provided. A geometrical feature value of the stenosis and/or or the section of the vessel is identified from the at least one image. At least one intensity feature value is determined based on a grey level intensity of the stenosis or the section of the vessel from the at least one image. A complexity value relating to the geometrical complexity of the stenosis or the section of the vessel is calculated as a function of the at least one geometrical feature value and the at least one intensity feature value of the stenosis or the section of the vessel.
摘要:
A method and system for operating an x-ray device for a creation of a three-dimensional angiography of a body vessel segment. A three-dimensional reconstruction of the body vessel segment is provided to a computing device of the x-ray device. A center line of the body vessel segment is computed. An axis of rotation is laid through the center line. The three-dimensional reconstruction is registered with the x-ray device. The suitability of at least one recording angle pair with a first and a second recording angle for the creation of the three-dimensional angiography is assessed on the basis of an assessment criterion by the computing device. One of the at least one assessed recording angle pairs is selected for creation of the three-dimensional angiography as a function of a result of the assessment, in order to improve the creation of the three-dimensional angiography.
摘要:
A method for ascertaining a fluid-dynamic characteristic value of a resilient vascular tree, through which a fluid flows in a pulsating manner, is provided. At least one 2D projection, respectively, of the resilient vascular tree is generated by a projection device from different angles of projection, and a digital 3D reconstruction of the vascular tree is generated by an analysis device based on of the 2D projections. A geometry of at least one vessel of the resilient vascular tree is estimated based on the 3D reconstruction, and at least one fluid state in the resilient vascular tree is ascertained from the geometry and predetermined resilient properties of the resilient vascular tree. The at least one fluid-dynamic characteristic value is calculated as a function of the at least one fluid state.
摘要:
A method and apparatus for generating at least one functional data set of a perfused region of the human or animal body are proposed. A first image data set is supplied comprising at least two images of the perfused region recorded at different times before and after an injection of contrast agent into a first artery supplying the region. A second image data set is supplied comprising at least two images of the perfused region recorded at different times before and after an injection of contrast agent into a second artery supplying the region. A first functional data set is generated by pixel-based calculation of at least one perfusion parameter from the first image data set. A second functional data set is generated by pixel-based calculation of at least one perfusion parameter from the second image data set.