Abstract:
A system for controlling an active material actuator includes an active material actuator configured to actuate when energized, a power supply configured to supply electrical power, and a control circuitry including a plurality of circuits and configured to selectively establish an electrical connection between the active material actuator and the power supply upon receipt of an activation signal. The control circuitry is configured to de-energize at least one of the circuits when no activation signal is received by the control circuitry in order to minimize parasitic current drawn from the power supply.
Abstract:
A multi-phase power inverter for an electric propulsion system includes a plurality of T-type multilevel power converters arranged between a high-voltage direct current (DC) power supply and an electric machine. Each of the plurality of T-type multilevel power converters is a solid-state integrated circuit that includes a positive DC power bus, a negative DC power bus, a neutral bus, and a plurality of semiconductor switches disposed in a stacked arrangement. The plurality of semiconductor switches is interconnected via the positive DC power bus, the negative DC power bus, and the neutral bus.
Abstract:
A motor vehicle includes an AC (alternating current) electric motor having a stator with a plurality of stator windings, a rechargeable source of stored electrical energy, and an inverter coupled to the rechargeable source of stored electrical energy and to the AC electric motor. The system also includes one or more controllers collectively programmed to switch the inverter to provide alternating current propulsive energy from the rechargeable source of stored electrical energy to the plurality of stator windings and, using at least one of the stator windings as a boost inductor, switch the inverter to step up a voltage at a charging input coupled to the inverter to charge the rechargeable source of stored electrical energy.
Abstract:
Presented are separately excited motor (SEM) drive systems, methods for making/using such systems, and vehicles equipped with such systems. A motor drive system includes a rechargeable battery unit and a multilevel power factor correction (PFC) device interposed between and electrically connecting the battery unit and an electric power source. The battery unit and PFC device are electrically connected via a traction inverter module (TIM) device and a multilevel power transfer circuit (PTC) device. The TIM contains multiple pairs of TIM switches, and the PTC device contains multiple PTC switches. An SEM unit contains a rotor assembly, which includes a rotor core bearing a rotor winding, and a stator assembly, which includes a stator core bearing multiple stator windings electromagnetically paired with the rotor winding. Each stator winding is electrically connected to a respective pair of TIM switches, whereas the rotor winding is electrically connected to the PTC switches.
Abstract:
A low voltage (LV) charging system for charging a high voltage (HV) rechargeable energy storage system (RESS), such as a HV RESS operable for electrically powering a traction motor of an electric vehicle. The LV charging system may include an input configured for receiving LV electrical power from a LV source and a distributed converter system configured for charging a plurality of modules of the HV RESS via a plurality of charging circuits. The charging circuits may be configured for separately charging one of the modules with a charging electrical power derived from converting the LV electrical power. The LV charging system may further include a controller configured for individually controlling the charging electrical power provided via each of the charging circuits.
Abstract:
A vehicle includes an inverter having a power module. The power module includes a high side bus, a low side bus and an alternating current (AC) output bus. The high side bus includes a first switch, wherein a high side current is configured to flow through the first switch in a first direction. The high side bus is disposed in a plane. The low side bus includes a second switch, wherein a low side current is configured to flow through the second switch in the first direction. The low side bus is parallel to the high side bus. The alternating current (AC) output bus is parallel to the high side bus and the low side bus, wherein an output current flows through the AC output bus in a second direction opposite to the first direction.
Abstract:
A vehicle includes a system for charging a battery of the vehicle. An electric motor couples to a charging station. A T-bridge multi-level inverter couples the electric motor to the battery. The inverter includes a first leg having a first set of switches and a first AC terminal coupled to the electric motor, a second leg having a second set of switches and a second AC terminal coupled to the electric motor and a third leg having a third set of switches and a third AC terminal coupled to the electric motor. A processor connects the third AC terminal to the charging station and controls at least one of the first set of switches to control a first current through the first AC terminal of the first leg and the second set of switches to control a second current through second AC terminal of the second leg.
Abstract:
Embodiments include an electric vehicle having a charging port configured to receive an alternating current (AC) power, a direct current (DC) battery, and a bidirectional inverter configured to convert AC power to DC power and to convert DC power to AC power, the bidirectional inverter is selectively connected to the DC battery by propulsion switches. The electric vehicle also includes an AC motor connected to the bidirectional inverter and selectively connected to the charging port by a first charging switch, an isolated DC/DC converter motor selectively connected to the DC battery via a second charging switch and a third charging switch, and a processor configured to control the operation of the propulsion switches, the first charging switch, the second charging switch, and the third charging switch based on an operational mode of the electric vehicle.
Abstract:
A conversion system includes a conversion device including a multilevel inverter configured to generate two alternating current (AC) output currents, a current sensor configured to sample a current through the multilevel inverter, or from the multilevel inverter, during a switching cycle, and a processor configure to estimate both of the two AC output currents based on the sampled current from the current sensor.
Abstract:
A system for modular dynamically adjustable capacity storage for a vehicle is provided. The system includes a battery pack including a plurality of battery cells, a negative terminal including a chassis ground connection, and a plurality of positive battery pack terminals. The negative terminal and the plurality of positive battery pack terminals are useful for connecting at least one electrical circuit through the battery pack. The system further includes a battery cell switching system, including a plurality of solid-state switches connected to each of the battery cells. The plurality of solid-state switches is operable to selectively connect a portion of the battery cells in parallel, selectively connect the portion of the battery cells in series, and selectively connect one of the plurality of battery cells to one of the plurality of positive battery pack terminals.