Abstract:
A method of and attachment system for securing and manipulating attractive objects upon an interior vehicular surface, utilizing at least one coded magnet to selectively attach/retain the objects, and provide various other functions, including aiding in alignment, orientation, and retrieval of the objects, and activating an associated sub-system.
Abstract:
An adjustable shape memory hold article, and method of adjusting same, are disclosed, where the includes a plurality of shape memory polymer segments having different activation temperatures or a shape memory polymer having a differential between TS and TF of at least 10° C. and no more than 70° C.
Abstract:
A load-carrying active material assembly and a method of preparing such an active material assembly suitable for attachment to a movable component of a mechanism is described. The assembly includes a shape memory alloy (SMA) element, a connector adapted to engage the moveable component mechanically crimped to the SMA element, and a filler material disposed intermediate the connector and SMA element. The filler may be a solder or a polymer. Methods for appropriately distributing the filler material and for promoting good adhesion of the filler to the SMA element and the connector are described.
Abstract:
A selectively rigidizable membrane for cargo management comprises a vacuum bladder, and a first architectural layer and a second architectural layer, each of the first and second architectural layers including a plurality of tiles interconnected by flexural elements, each of the tiles of the first and second architectural layers including at least one constraining element extending therefrom, wherein, when atmospheric pressure is present within the vacuum bladder, the first and second architectural layers are slidably moveable relative to one another and the membrane is flexible, and further wherein, when negative pressure is applied to the vacuum bladder, the first and second architectural layers are forced into engagement with one another, the constraining elements of the first and second architectural layers providing mechanical interference and preventing sliding movement of the first and second architectural layers relative to one another, causing the membrane to become substantially rigid.
Abstract:
The knitted textiles include a knitted structure including a plurality of hollow yarns. Each hollow yarn includes a yarn body and defines a yarn hole extending through the yarn body to allow expansion of the yarn body upon inflation of each hollow yarn through the yarn hole. The knitted structure is configured to transition from an unexpanded state to an expanded state in response to the inflation of the hollow yarns through the yarn hole. The knitted structure has a first porosity in the unexpanded state, and the knitted structure has a second porosity in the expanded state. The second porosity is less than the first porosity such that a visibility through the knitted structure is greater when the knitted structure is in the unexpanded state than when the knitted structure is in the expanded state.
Abstract:
A knitted structure is configured for heat generation and distribution. In some embodiments, the knitted structure includes a knitted fabric including a first knitted layer and a second knitted layer opposite the first knitted layer. The first knitted layer has a first thermal conductivity. The second knitted layer has a second thermal conductivity. The second thermal conductivity is greater than the first thermal conductivity to facilitate heat transfer toward the first knitted layer. The knitted structure may further include a plurality of electrodes at least partially disposed inside the knitted fabric. Each of the plurality of electrodes is configured to generate heat within the knitted fabric upon receipt of electrical energy in order to distribute heat along the knitted structure and toward the first knitted layer.
Abstract:
An inflatable system includes a bladder configured to contain fluid, a first plurality of tethers disposed within a first region of the bladder, and a second plurality of tethers disposed within a second region of the bladder. The first plurality of tethers has a first tether length, a first tether spacing, a first tether angle relative to one wall of the bladder, and a first tether stiffness. The second plurality of tethers has a second tether length, a second tether spacing, a second tether angle relative to the one wall, and a second tether stiffness. At least one of: the second tether length is different than the first tether length; the second tether spacing is different than the first tether spacing; the second tether angle is different than the first tether angle; and the second tether stiffness is different than the first tether stiffness.
Abstract:
Presented are deployable structures having multi-stable-state characteristics using skeletal architectures mounted onto textile backings, methods for making/using such structures, and vehicle components having bistable characteristics provided by polymeric exoskeletons printed onto textile substrates. A multi-stable-state deployable structure includes an elastic substrate fabricated from a (knitted) textile sheet, and an articulating (polymeric) framework mounted on the knitted textile sheet. The articulating framework and textile sheet structurally cooperate to transition from a first stable state, in which the deployable structure maintains a substantially planar shape, to a second stable state, in which the deployable structure maintains a first multidimensional topography, and from the second state to a third stable state, in which the deployable structure maintains a second multidimensional topography distinct from the first multidimensional topography. The articulating framework may include an elongated spine sandwiched between first and second sets of ribs, and a frame circumscribing the spine and ribs.
Abstract:
A thermal bypass valve includes a housing defining a bore along a longitudinal axis and having two inlet ports and two outlet ports; a cap disposed within the bore; a shuttle disposed within the bore and reversibly translatable towards and away from the cap along the longitudinal axis between a first fill position, a cooling position, and a bypass position; and an actuator configured for translating the shuttle along the longitudinal axis between the cooling position and the bypass position. The actuator is formed from a shape memory alloy and is transitionable between a first state and a second state in response to a temperature of the fluid.
Abstract:
A liquid level sensor is arranged to sense a quantity of a liquid within a reservoir. The sensor includes a plurality of discrete sensing units disposed within the reservoir. Each of the plurality of sensing units has an output, and the output has a first value when the sensing unit is immersed in a liquid and a second value, different from the first value, when the sensing unit is not immersed in a liquid. A signal generator is operably electrically coupled to each of the plurality of sensing units. The signal generator is operable to provide an excitation signal to each of the plurality of sensing units. Each of the plurality of sensing units is operable to provide the output responsive to the excitation signal.