Abstract:
A core for an electric machine includes a core body arranged along a rotation axis and a winding. The core body has two or more teeth including a first tooth and a second tooth that are circumferentially spaced from one another about the rotation axis. The winding is to the core body and includes two or more coils connected electrically in series with one another. A first of the coils is seated circumferentially about both the first tooth and the second tooth to define a distributed pole circumferentially spanning both the first tooth and the second tooth. Electric machines and methods of making cores for electric machines are also described.
Abstract:
A rotor for an electrical machine includes a rotor core having a plurality of circumferentially spaced apart rotor poles. Windings are seated in gaps between circumferentially adjacent pairs of the rotor poles. A wedge secures the windings in each gap. The wedge includes a first member made of a first material and at least one second member made of a second material. The second material has a higher electrical conductivity than the first material. The wedge is configured to supply Q-axis damping. A pair of end plates is connected electrically to the at least one second member at opposing longitudinal ends thereof thereby completing a Q-axis winding circuit for each wedge.
Abstract:
Disclosed is a system for a gas turbine engine, the gas turbine engine comprising a primary shaft, the system including a rotor shaft; a plurality of components connected to the rotor shaft, including a wound field synchronous main machine (MM) and a permanent magnet generator (PMG); and wherein the PMG, alone or with the MM provide torque to change rotational speed of the rotor shaft, thereby changing rotational speed of the primary shaft.
Abstract:
A system has an electric motor having a stator and a rotor. The rotor rotates with a shaft and the shaft drives a fluid rotor. A control senses a fault condition on the electric motor. The control actuates a speed reduction feature when a fault is detected to bring rotation of the motor rotor and the fluid rotor to a stop more rapidly than if the speed reduction feature had not been actuated.
Abstract:
A rotor for an electrical machine includes a rotor core having a plurality of circumferentially spaced apart rotor poles. Windings are seated in gaps between circumferentially adjacent pairs of the rotor poles. A wedge secures the windings in each gap. The wedge includes a first member made of a first material and at least one second member made of a second material. The second material has a higher electrical conductivity than the first material. The wedge is configured to supply Q-axis damping. A pair of end plates is connected electrically to the at least one second member at opposing longitudinal ends thereof thereby completing a Q-axis winding circuit for each wedge.
Abstract:
Embodiments include a technique for controlling aircraft VFG over voltage under fault or load-shed, the techniques includes using a control unit for generating signals to maintain a terminal output voltage and frequency, and a variable frequency generator, coupled to the control unit, for generating the terminal output voltage. The variable frequency generator includes a stator having a set of primary stator windings and a set of secondary stator windings for generating the terminal output voltage, and a switch coupled to the set of secondary stator windings, the switch is configured to operate at a threshold frequency of the VFG to regulate the terminal output voltage by supplementing the terminal output voltage produced by the set of primary stator windings reducing the VFG fault over-voltage.
Abstract:
An end winding support for an electric generator includes a pair of winding lead supports formed on opposite sides of a winding slot and separated by an upper slot width. Each of the winding lead supports includes a winding channel routed between a lead coupling port and the winding slot. The winding slot includes a base support and a pair of alignment members that define a transition between the base support and the winding lead supports. A lower slot width is defined along the base support between the alignment members and a ratio of the upper slot width to the lower slot width is between 1.024 and 1.053.
Abstract:
An electrical machine system includes a stator having a conical stator surface defining a rotary axis. A rotor is operatively connected to the stator for rotation relative thereto, wherein the rotor includes a conical rotor surface. A conical gap is defined between the conical surfaces of the stator and rotor about the rotary axis. An actuator is operatively connected to at least one of the stator and rotor for relative linear motion along the rotary axis of the stator and rotor to change the conical gap, wherein the actuator provides relative linear motion between a first position for a first conical gap width and a second position for a second conical gap width different form the first conical gap width. In both the first and second positions the full axial length of one of the rotor or stator is axially within the axial length of the other.
Abstract:
An electric machine is provided. The electric machine may comprise an inlet and a stator fluidly coupled to the inlet. The stator may comprise a first cooling channel formed in the stator with a first cross-sectional area. A second cooling channel may be formed in the stator and have a second cross-sectional area. The first cross-sectional area may be less than the second cross-sectional area. The electric machine may also include an outlet fluidly coupled to the stator. A stator assembly is also provided. The stator assembly may include a first channel with a first cross-sectional area and a second channel with a second cross-sectional area. The second cross-sectional area may be less than the first cross-sectional area.
Abstract:
An electrical power generation system includes a flux switching machine (FSM) including an FSM rotor operatively connected to an FSM stator, the FSM rotor operatively connected to a shaft, wherein the FSM includes an electrical input/output (i/o) in electrical communication with the FSM stator, and a permanent magnet machine (PMM) including a PMM rotor operatively connected to a PMM stator, the PMM rotor operatively connected to a the shaft, wherein the PMM is electrically connected to the FSM.