Abstract:
Systems and methods are provided for coexistence management service for licensed and unlicensed spectrum sharing. A coexistence system may include a coexistence manager (CM) that may provide resource allocation services for a coexistence enabler (CE). CMs may negotiate with each other to resolve coexistence issues via directly or indirectly through a coexistence discovery and information server (CDIS). A channel may be exclusively used by a CE network. The networks may mitigate interference by avoiding use of the same channels. A channel may be shared by multiple CE networks. In co-channel sharing, the networks may mitigate interference via power management. Bidding processes may be implemented directly via competing CMs, for example via open or silent token auction. Bidding processes among competing CMs may be managed by a third party entity, for example a CDIS, for example via open or silent token auction.
Abstract:
Embodiments contemplate techniques for managing aggregation between using an anchor channel over a first frequency band as the anchor band between an Access Point and a wireless receiver/transmitter unit (WTRU). One or more embodiments may include the WRTU receiving one or more beacons via the anchor channel, where the one or more beacons may provide allocation information for allocating a supplementary channel on a second frequency band as a supplementary band that may be different from the first frequency band. Embodiments also contemplate establishing the supplementary channel over the supplementary band using the allocation information provided in the one or more beacons. Embodiments also contemplate exchanging data over the established supplementary channel on the supplementary band.
Abstract:
Methods and apparatus for spectrum coordination are described. A method of spectrum coordination includes a spectrum coordinator receiving a request for shared spectrum from a CRS that the spectrum coordinator supports. The request includes at least one minimum protection requirement. The spectrum coordinator determines protection criteria for the CRS based on the at least one minimum protection requirement received from the CRS. The spectrum coordinator sends the protection criteria for the CRS to a geo-location database for use in assigning shared spectrum to other CRSs that the spectrum coordinator does not support.
Abstract:
A method and apparatus may be used for short range multi-device communications. The method and apparatus may be used in personal area networks (PANs). The apparatus may transmit a security key using a non-penetrating wavelength. The apparatus may establish a secure communication and transmit data using a penetrating wavelength. The data transmission may be encrypted.
Abstract:
A method and apparatus for supporting machine-type communications (MTC) are disclosed. A wireless transmit/receive unit (WTRU) may configure itself to operate in a mobile-originated-only mode. The WTRU may perform no, or a subset of, radio resource control (RRC) idle and/or non-access stratum (NAS) idle/standby state procedures in the mobile-originated-only mode. For example, the WTRU may perform cell reselection but not paging monitoring in the mobile-originated-only mode. Alternatively, the WTRU may perform paging monitoring but not cell reselection and location update. The operation in the mobile-originated-only mode may be triggered explicitly or implicitly. For example, the WTRU may operate in the mobile-originated-only mode if an inactivity timer expires. The WTRU may switch the mode in accordance with a pre-configured schedule. After transition of the operation mode, the WTRU may send a message to the network indicating such mode switch.
Abstract:
A wireless network may implement a reduced bandwidth for control information transmitted and/or received on the wireless network. The reduced bandwidth may be used to avoid interference that may be detected from an in-band or adjacent channel. The reduced bandwidth may be used for transmission and/or reception of control information on a cellular or Wi-Fi channel. An eNB or an access point (AP) may signal to a wireless transmit/receive unit (WTRU) information associated with the reduced control channel, such as the power and/or the location of the channel in a frequency band. The control channel may be shifted to avoid a change in interference.
Abstract:
Methods of mapping, indicating, encoding and transmitting uplink (UL) grants and downlink (DL) assignments for wireless communications for carrier aggregation are disclosed. Methods to encode and transmit DL assignments and UL grants and map and indicate the DL assignments to DL component carriers and UL grants to UL component carriers are described. Methods include specifying the mapping rules for DL component carriers that transmit DL assignment and DL component carriers that receive physical downlink shared channel (PDSCH), and mapping rules for DL component carriers that transmit UL grants and UL component carriers that transit physical uplink shared channel (PUSCH) when using separate coding/separate transmission schemes.
Abstract:
A method and apparatus for supporting machine-type communications (MTC) are disclosed. A wireless transmit/receive unit (WTRU) may configure itself to operate in a mobile-originated-only mode. The WTRU may perform no, or a subset of, radio resource control (RRC) idle and/or non-access stratum (NAS) idle/standby state procedures in the mobile-originated-only mode. For example, the WTRU may perform cell reselection but not paging monitoring in the mobile-originated-only mode. Alternatively, the WTRU may perform paging monitoring but not cell reselection and location update. The operation in the mobile-originated-only mode may be triggered explicitly or implicitly. For example, the WTRU may operate in the mobile-originated-only mode if an inactivity timer expires. The WTRU may switch the mode in accordance with a pre-configured schedule. After transition of the operation mode, the WTRU may send a message to the network indicating such mode switch.
Abstract:
A method and apparatus are described for using an uplink (UL) primary carrier for long term evolution-advanced (LTE-A) to support hybrid automatic repeat request (HARQ) feedback, a channel quality indicator (CQI), a scheduling request (SR), power headroom, and at least one buffer status report in the context of asymmetrical deployment and symmetrical deployment.
Abstract:
Techniques for component carrier-specific reconfiguration are disclosed. A wireless transmit/receive unit (WTRU) is capable of transmitting or receiving via multiple component carriers. The WTRU may perform component carrier reconfiguration on a component carrier basis to add, remove or replace a component carrier. Discontinuous reception (DRX) and/or discontinuous transmission (DTX) may be performed on at least one component carrier, wherein DRX and/or DTX patterns on the component carriers may not overlap each other. A random access procedure may be performed at the target cell on one component carrier while other component carriers are inactive. The component carrier-specific reconfiguration or handover of a component carrier or a channel may be implemented in coordinated multiple point transmission (CoMP), wherein a handover of a control channel, not a traffic channel, may be performed. Alternatively, a handover of a traffic channel may be performed.