Dielectric holder for quantum devices

    公开(公告)号:US10784431B2

    公开(公告)日:2020-09-22

    申请号:US16173720

    申请日:2018-10-29

    Abstract: A device includes a first substrate formed of a first material that exhibits a threshold level of thermal conductivity. The threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum circuit operates. In an embodiment, the device also includes a second substrate disposed in a recess of the first substrate, the second substrate formed of a second material that exhibits a second threshold level of thermal conductivity. The second threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum circuit operates. In an embodiment, at least one qubit is disposed on the second substrate. In an embodiment, the device also includes a transmission line configured to carry a microwave signal between the first substrate and the second substrate.

    Flip chip assembly of quantum computing devices

    公开(公告)号:US10692795B2

    公开(公告)日:2020-06-23

    申请号:US16188466

    申请日:2018-11-13

    Abstract: In an embodiment, a quantum device includes an interposer layer comprising a set of vias. In an embodiment, the quantum device includes a dielectric layer formed on a first side of the interposer, the dielectric layer including a set of transmission lines communicatively coupled to the set of vias. In an embodiment, the quantum device includes a plurality of qubit chips coupled to an opposite side of the interposer layer, each qubit chip of the plurality of qubit chips including: a plurality of qubits on a first side of the qubit chip and a plurality of protrusions on a second side of the qubit chip. In an embodiment, the quantum device includes a heat sink thermally coupled with the plurality of qubit chips, the heat sink comprising a plurality of recesses aligned with the plurality of protrusions of the plurality of qubit chips.

    FLIP CHIP ASSEMBLY OF QUANTUM COMPUTING DEVICES

    公开(公告)号:US20200152540A1

    公开(公告)日:2020-05-14

    申请号:US16188466

    申请日:2018-11-13

    Abstract: In an embodiment, a quantum device includes an interposer layer comprising a set of vias. In an embodiment, the quantum device includes a dielectric layer formed on a first side of the interposer, the dielectric layer including a set of transmission lines communicatively coupled to the set of vias. In an embodiment, the quantum device includes a plurality of qubit chips coupled to an opposite side of the interposer layer, each qubit chip of the plurality of qubit chips including: a plurality of qubits on a first side of the qubit chip and a plurality of protrusions on a second side of the qubit chip. In an embodiment, the quantum device includes a heat sink thermally coupled with the plurality of qubit chips, the heat sink comprising a plurality of recesses aligned with the plurality of protrusions of the plurality of qubit chips.

    Superconducting quantum circuits layout design verification

    公开(公告)号:US10599805B2

    公开(公告)日:2020-03-24

    申请号:US15828623

    申请日:2017-12-01

    Abstract: Verifying a quantum circuit layout design is provided. A qubit layout is received as input. The qubit layout is generated from a qubit schematic. The qubit schematic includes a plurality of qubits, a plurality of coupling buses, a plurality of readout buses, and a plurality of readout ports. Design rules checking is performed on the qubit layout input, using a predefined set of design rule. The bus style/frequency and qubit information are extracted from the qubit layout input. A new qubit schematic is generated from the extracted bus style/frequency and qubit information. The qubit layout is verified based on the new qubit schematic being the same as the qubit schematic.

    Symmetrical qubits with reduced far-field radiation

    公开(公告)号:US10573685B1

    公开(公告)日:2020-02-25

    申请号:US16054326

    申请日:2018-08-03

    Abstract: Symmetrical qubits with reduced far-field radiation are provided. In one example, a qubit device includes a first group of superconducting capacitor pads positioned about a defined location of the qubit device, wherein the first group of superconducting capacitor pads comprise two or more superconducting capacitor pads having a first polarity, and a second group of superconducting capacitor pads positioned about the defined location of the qubit device in an alternating arrangement with the first group of superconducting capacitor pads, wherein the second group of superconducting capacitor pads comprise two or more superconducting capacitor pads having a second polarity that is opposite the first polarity.

Patent Agency Ranking