Abstract:
A screw and coupling element assembly for use with an orthopedic rod implantation apparatus includes a screw with a head and a shaft extending from the head, a coupling element with a seat within which the head is seatable such that the shaft protrudes from the coupling element, and a locking element mateable with the coupling element and when mated is selectively movable through a plurality of positions including unlocked and locked positions. When in the unlocked position, the locking element presents a rod-receiving channel and the head is movable in the seat such that the shaft is directable in a plurality of angles relative to the coupling element. When in the locked position, a rod disposed within the rod-receiving channel is fixed relative to the coupling element and the head is immovable in the seat such that the shaft is fixed at an angle relative to the coupling element.
Abstract:
An orthopedic device including a longitudinal plate assembly having an adjustable length and two ends. Each of the ends includes a feature that can be used to couple the end to a body structure, such as, for example, a vertebral bone. Preferably, the assembly includes two longitudinal plates that can translate longitudinally with respect to one another through a plurality of positions and be secured with respect to one another at one of the positions, thereby enabling the length of the assembly to be adjusted. Inasmuch as the length of the plate assembly can be adjusted, the surgeon can set the length to the most clinically appropriate length for effective coupling of the plate assembly to the body structure.
Abstract:
A polyaxial orthopedic device for use with rod implant apparatus includes a screw having a curvate head, a cross bar mounting element having a socket into which the head of the screw is initially polyaxially nested. The cross bar mounting element further includes a vertical split which permits the socket to be expanded or compressed via the application of a corresponding force directed at the split. The cross bar mounting element further includes a pair of upwardly extending members which define a trough into which a cross bar element is positioned. The cross bar element includes features which permit the secure fixation of a rod thereto, as well as a selectively slideable element, such as a nut, which may be tightened to apply the compressive force necessary to compress the interior volume onto the head of the screw, thus locking the assembly in place.
Abstract:
A bone plate and system is provided. The bone fixation plate conforms to the contour of an irregularly shaped bone and eliminates the need for pre-bending or intraoperative bending of the plate. The bone plate is applied to the bone in a generally flat condition and the process of installing and tightening the bone screws in the prescribed order serves to contour the plate to the plate to the underlying bone while providing sufficient strength to effect bone healing. The geometry of the plate allows the plate to follow the contour of an irregularly shaped bone, preventing prominence and patient palpability and streamlining the surgical procedure.
Abstract:
Strip fasteners and cranial plugs for use in reattaching a skull flap removed during brain surgery and methods of using the same. The strip fasteners are flexible and can be shaped to follow the perimeter contour of the skull flap. The cranial plugs can be used to reattach the skull flap or they can be installed after the skull flap is reattached using the strip fasteners. In some embodiments, the cranial plug(s) and strip fasteners can be installed at the same time. The strip fasteners and cranial plugs are designed to encourage bone growth and healing of the skull flap and they can be used to deliver medication and bone growth enhancement compositions to the surgical site.
Abstract:
Strip fasteners and cranial plugs for use in reattaching a skull flap removed during brain surgery and methods of using the same. The strip fasteners are flexible and can be shaped to follow the perimeter contour of the skull flap. The cranial plugs can be used to reattach the skull flap or they can be installed after the skull flap is reattached using the strip fasteners. In some embodiments, the cranial plug(s) and strip fasteners can be installed at the same time. The strip fasteners and cranial plugs are designed to encourage bone growth and healing of the skull flap and they can be used to deliver medication and bone growth enhancement compositions to the surgical site.
Abstract:
The invention pertains to adjustable bone plates which comprise one or more sets of first members and second members. The first members and second members are releasably secured to each other by attachment means and locking means, and two or more set of first members and second members are connected by bridging means. The longitudinal and lateral dimensions of the bone plates may be adjustable.
Abstract:
The invention pertains to adjustable bone plates which comprise one or more sets of first members and second members. The first members and second members are releaseably secured to each other by attachment means and locking means, and two or more set of first members and second members are connected by bridging means. The longitudinal and lateral dimensions of the bone plates may be adjustable.
Abstract:
A surgical treatment for restoring proper anatomical spacing and alignment to vertebral bones including: determining an angular misalignment associated with adjacent vertebral bones; sequentially inserting and removing a series of progressively wider spacer elements into the corresponding intervertebral space between the adjacent vertebral bones until the proper anatomical spacing between the adjacent vertebral bones is restored; for each intervertebral space, inserting a tapered porous spacer element into the intervertebral space between the corresponding adjacent vertebral bones; rotating the tapered porous spacer element such that the rotational orientation of the tapered porous spacer element introduces the appropriate counter offset to the intervertebral space of the previously misaligned scoliotic vertebral bones, thereby restoring the proper anatomical alignment of the vertebral bones; and stabilizing the adjacent vertebral bones to permit infused growth of bone into the tapered porous spacer element.
Abstract:
A polyaxial locking cervical screw and plate assembly for immobilization of cervical bones, via fixation to surfaces thereof, including a plate, having a pair of elongated tapered holes in the top and bottom thereof, into which holes elongated coupling elements and screws may be inserted. Each coupling element has an equivalent taper which matches the taper of the holes in the plate, and an interior semi-spherical curvate surface in which the curvate head of the screw may be polyaxially mounted. The coupling elements are initially disposed in the holes in the plate such that they may slide axially therein. The bone screws are inserted through the respective coupling elements until the heads thereof enter the curvate volumes thereof. Once the head is fully seated in the coupling element, advancement of the screw causes the coupling element to crush lock to the plate and to the head of the screw.