Abstract:
A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
Abstract:
This invention provides methods and compositions for incorporation of an unnatural amino acid into a peptide using an orthogonal aminoacyl tRNA synthetase/tRNA pair. In particular, an orthogonal pair is provided to incorporate 5-hydroxy-L-tryptophan in a position encoded by an opal mutation.
Abstract:
The invention relates to a process for the epoxidation of an olefin comprising (a) reacting the olefin with hydrogen peroxide in the presence of methanol as solvent in at least two reaction stages to obtain a mixture (M-a) comprising olefin oxide, unreacted olefin, methanol and water, wherein between at least two reaction stages, olefin oxide is separated by distillation; (b) separating unreacted olefin from the mixture (M-a) by distillation to obtain a mixture (M-bi) comprising at least 80 wt.-% of olefin and a mixture (M-bii) comprising methanol, water and at least 7 wt.-% of olefin oxide; (c) separating olefin oxide from the mixture (M-bii) in at least one distillation stage to obtain a mixture (M-ci) comprising at least 99 wt.-% of olefin oxide and a mixture (M-cii) comprising water and at least 55 wt.-% of methanol; (d) separating methanol from the mixture (M-cii) in at least one distillation stage to obtain a mixture (M-di) comprising at least 85 wt.-% of methanol and up to 10 wt.-% of water, and a mixture (M-dii) comprising at least 90 wt.-% of water; wherein a vapor top stream (Td) obtained from at least one distillation column used in (d), said vapor top stream (Td) comprising at least 85 wt.-% methanol, is used to operate at least partially at least one vaporizer used in at least one distillation column used in at least one of stages (a), (b) and (c).
Abstract:
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
Abstract:
Methods and compositions for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid having a N-acetylgalactosamine moiety into a protein; optionally, the N-acetylgalactosamine-containing unnatural amino acid can be further modified with additional sugars.
Abstract:
A method of separating propylene oxide from a mixture (M) comprising 5 to 50 percent by weight propylene oxide and 50 to 85 percent by weight methanol, said method comprising (i) introducing said mixture (M) into an extractive distillation column; (ii) additionally introducing a polar solvent into said extractive distillation column; (iii) distilling propylene oxide overhead from said extractive distillation column at a bottoms temperature of from 40 to 70° C. and at a pressure of from 300 to 750 mbar.