摘要:
A method is provided for controlling regenerative braking in a hybrid electric vehicle. The vehicle includes an energy-storage device, a motor/generator configured to retard the vehicle via regenerative braking, and a controller arranged to control regenerative braking. The method includes receiving a regenerative braking request, and detecting whether the energy-storage device is between first and second predetermined states of charge. The method additionally includes retarding the vehicle via the motor/generator and directing electrical energy from regenerative braking to an energy dissipating device, if the energy-storage device is at or above the first predetermined state of charge, or at or below the second predetermined state of charge. Furthermore, the method includes retarding the vehicle via the motor/generator and directing electrical energy from regenerative braking to the energy-storage device, if the energy-storage device is between the first and second predetermined states of charge.
摘要:
Integrity of data stored in a memory space associated with a vehicle-based control system (such as a traction enhancement system) is verified through the use of sub-module checksums. A checksum for one or more subsystem modules is initially calculated based upon a checksum routine and the values of data residing in the portions of the memory space associated with the subsystem of interest. A global checksum is also initially calculated based upon data associated with the entire memory space. If the global checksum matches an expected value, the subsystem checksum(s) are stored as expected subsystem checksums. During subsequent operation, a second subsystem checksum is calculated and compared against the expected checksum value for the subsystem to verify the integrity of data residing within the memory space associated with the subsystem.
摘要:
A sensor module adjustment circuit includes a device have a position between minimum and maximum positions. First and second position sensors sense the position of the device and generate first and second position values, respectively. A sensor module includes first and second signal conversion modules that generate first and second signal waveforms based on the first and second position values, that include first and second gain modules, and that vary a frequency and a duty cycle, respectively, of the first and second signal waveforms based on the first and second position values. A gain magnitude module determines first and second signal gains of the first and second gain modules, respectively. A signal preset module adjusts the first and second signal gains so that the first and second signal waveforms are equal to first and second predetermined signal waveforms, respectively, when the position of the device is fixed.
摘要:
A method of controlling traction in a vehicle having at least one non-driven wheel speed sensor. Actual vehicle acceleration and a wheel speed difference are detected. At least one of the actual vehicle acceleration and the wheel speed difference is compared to at least one of a predetermined vehicle acceleration and a predetermined wheel speed difference to detect vehicle wheel slip. A wheel torque is reduced in response to detected wheel slip. The foregoing method allows traction control to be installed in many types of vehicles, including vehicles without ABS. More than one type of wheel slip detection can be implemented, and various types of wheel slip can be detected.
摘要:
Barometric pressure is determined in a hybrid electric vehicle from manifold absolute pressure. During engine operation, wide open throttle is commanded and output torque disturbances are offset by the electric machine. Barometric pressure is estimated based on sensed intake manifold pressure and engine speed dependent pressure offsets. During engine shut down, barometric pressure may be determined from manifold pressure without any offset adjustments.
摘要:
A method and apparatus are provided for generating a vehicle control signal that controls a function of a vehicle device associated with a sensed event. The apparatus comprises a first sensor that is configured to provide a first sensor output signal having a first magnitude that approximately corresponds to a sensed event with a first accuracy and second sensor that is configured to provide a second sensor output signal having a second magnitude that approximately corresponds to the sensed event with a second accuracy that is less than the first level of accuracy. The apparatus also comprises a processor that is configured to receive the first sensor output signal, receive the second sensor output signal, calculate a magnitude for the vehicle control signal based on an average of a weighted value of the first magnitude and the second magnitude, generate the vehicle control signal with the magnitude, and provide the vehicle control signal to the vehicle device.
摘要:
A control system includes a device having a position between minimum and maximum positions. A first position sensor senses the position of the device and generates a first position value. A second position sensor senses the position of the device and generates a second position value. A sensor module communicates with the first and second position sensors and generates a single signal waveform based on the first and second position values. A frequency of the waveform is varied based on the first position value. A duty cycle of the waveform is varied based on the second position value. A conductor has a first end that communicates with the sensor module and a second end that communicates with a control module. The sensor module transmits the waveform to the control module on the conductor. The control module decodes the waveform to determine the first and second position values.
摘要:
Systems, methods and devices are described that provide a three-state control signal across a single electrical conductor. A three-position switch provides an output signal that selects between the first reference voltage, a second reference voltage and an intermediate voltage. The output from the switch is transmitted to a voltage divider circuit that produces a predetermined result when the switch output corresponds to the intermediate state. The output of the voltage divider is then provided to an analog-to-digital converter to decode the state of the switch. The three-state control signal may be used, for example, to place a vehicle component such as a windshield temperature controller or rear-window defogger into a desired one of three operating states. Similarly, the three-state concepts may be widely applied in many automotive, industrial, consumer electronics and other settings.
摘要:
A diagnostic apparatus is suitable for use in an automobile controller and includes a power supply terminal conducting a reference voltage, a sampling circuit and a reference voltage diagnostic circuit. The sampling circuit is coupled to the power supply terminal and has an output terminal for providing sampled values of the reference voltage. The reference voltage diagnostic circuit has an input terminal coupled to the output terminal of the sampling circuit. The reference voltage diagnostic circuit maintains a historical value of the reference voltage over a predetermined time period, compares a current sampled value of the reference voltage to the historical value, and indicates a fault in the reference voltage in response to the current sampled value being different from the historical value by more than a predetermined threshold.
摘要:
A control system for maintaining powertrain responsiveness adjusts a throttle progression curve to compensate for different vehicle loads. The control system calculates an actual vehicle acceleration rate based on measured vehicle speed for evaluation of total mass being propelled by the vehicle. The calculated actual vehicle acceleration rate is compared to a target vehicle acceleration rate. A throttle progression curve is adjusted based on the results of the comparison so that a subsequent actual vehicle acceleration rate is closer to the target vehicle acceleration rate.