摘要:
A GaN-based semiconductor laser (1) emits first laser light of a single polarization and having a first wavelength. An optical resonator (30) includes a solid-state laser medium which is excited by incidence of the laser light and which oscillates second laser light having a second wavelength different from the first wavelength. A polarization switch (6) switches over at least one of polarization directions of the first laser light and the second laser light to thereby change the wavelength of laser light to be emitted from the optical resonator (30) or the intensity ratio between a plurality of laser light to be emitted from the optical resonator (30). With the above arrangement, a plurality of laser light can be used effectively.
摘要:
A solid-state laser apparatus includes: a semiconductor laser light source for emitting laser light; an optical resonator having a solid-state laser medium to be excited by incidence of the laser light to oscillate fundamental laser light, and a mirror; and a quasi phase matching wavelength converting element, disposed in the optical resonator, for converting a wavelength of the fundamental laser light, wherein the quasi phase matching wavelength converting element is formed with a polarization inversion region having a predetermined cycle, and the length of the polarization inversion region in an optical axis direction is 1.0 mm or less.
摘要:
A wavelength conversion apparatus capable of stably providing high output harmonic laser light is provided. The wavelength conversion apparatus comprises an end pump fiber laser 3 containing a laser activating substance, and including a reflecting surface at one end thereof and a fiber grating in the vicinity of the reflecting surface; an excitation laser light source 1 for outputting excitation laser light; an excitation laser light introduction section 4 for introducing the excitation laser light from the excitation laser light source to the fiber laser; a wavelength conversion element 5 for converting a fundamental wave generated by the fiber laser to a harmonic; and a rear reflecting surface 6 located outside the fiber laser and forming a laser cavity together with the fiber grating.
摘要:
Upon obtaining green light as wavelength converted light by causing infrared light to be incident on a wavelength conversion element, the absorption of the green light occurs due to the generation of ultraviolet light as sum-frequency light of the infrared light and the green light in the wavelength conversion element and the destruction of a crystal composing the wavelength conversion element occurs due to heat generated at this time. In a laser wavelength converter of the present invention, a condensed position of the infrared light in the wavelength conversion element is deviated from a position assumed to be optimal when the influence of the generated heat is ignored. Consequently, crystal destruction is suppressed, a high-efficiency wavelength conversion is enabled and high-output wavelength converted light exceeding several watts, which was difficult to attain in conventional wavelength conversion elements, is attained.
摘要:
There has been a problem that pumping light leaks from a part having a coating at the joint of a double-clad fiber added with a rare earth and a general single-mode fiber, and heat is generated partly from the fiber by this energy thus causing deterioration of the fiber. Deterioration of a fiber due to residual excitation light can be prevented by preventing residual excitation light in a double-clad fiber from exiting to a single-mode fiber, and the reliability is enhanced. Output of oscillation light can be increased because output of excitation light is not limited. Furthermore, a laser display having a high color reproducibility can be achieved by employing a light source combining a fiber laser light source and a wavelength conversion module.
摘要:
The present invention provides a surface illuminator having a uniform luminance over a large area by using a laser light source, having a wide color reproduction range, and capable of suppressing a speckle noise, as well as a liquid crystal display using the same. The surface illuminator of the present invention includes the laser light source that emits a laser beam; a beam scan section that deflects and scans the laser beam; and a first plate-shaped light guide that makes the laser beam deflected and scanned by the beam scan section to be incident from an end face portion and making the incident laser beam to emit from a first major surface. Further, the liquid crystal display of the present invention includes a liquid crystal display panel and the surface illuminator, wherein the surface illuminator is used as a backlight illuminator that lights the liquid crystal display panel from backside in this liquid crystal display.
摘要:
A wavelength conversion module includes: a first fundamental wave propagation optical fiber for propagating a fundamental wave emitted from a laser light source; a first wavelength conversion element, optically connected to the first fundamental wave propagation optical fiber, for converting the fundamental wave emitted from the first fundamental wave propagation optical fiber into a harmonic wave; and a first harmonic propagation optical fiber, optically connected to the first wavelength conversion element, for propagating the harmonic wave emitted from the first wavelength conversion element, wherein the core diameter of the first harmonic propagation optical fiber is 0.5 to 0.9 times as large as the core diameter of first fundamental wave propagation optical fiber.
摘要:
When one tries to obtain high-output wavelength conversion light of class W, the internal temperature of a wavelength conversion element rises significantly to cause an undue variation in phase matching wavelength and thereby it is difficult to match the wavelength of a fundamental wave to the phase matching wavelength. A part of the output of the fundamental wave or pumping light propagating on a fiber is thereby absorbed by doping the fiber with a rare earth element at a set concentration, and the temperature of a fiber grating is raised by heating the fiber grating with heat produced through the absorption. Consequently, the wavelength of the fundamental wave obtained through the fiber grating by widening the grating interval is substantially matched to the phase matching wavelength which can be converted by the wavelength conversion element, and a wavelength converter ensuring a stable high output up to class W is provided.
摘要:
A laser light source (10) has semiconductor lasers (1) and a waveguide tube (3) for propagating emission light from each of the semiconductor lasers (1). The semiconductor lasers are arranged on the upper end on the incident surface (31) side of the waveguide tube such that the emission light (4) from each of the semiconductor lasers enters into the waveguide tube from one end surface (31) of the waveguide tube and exits from the other end surface (32) of the waveguide tube. The structure can realize a small-sized laser light source having high output and capable of outputting emission light having uniform emission light intensity distribution.
摘要:
There has been a problem that interference noise called speckle noise occurs in a two-dimensional image display device using laser, and there is no applicable green light source although the speckle noise can be reduced by using a multi-wavelength light source. The present invention adopts a Yb-doped clad pump fiber (103) which is a rare-earth-doped fiber as a laser activation substance, whereby a peak of a fluorescence spectrum can be significantly increased as compared with a case of using an oxide crystal, and a variation width of an oscillation wavelength can be increased. Further, since the rare-earth-doped fiber is used as a fiber amplifier without providing laser mirrors at both ends thereof, control for a resonator length, which has been required in a conventional device (wherein an oxide crystal is used as a laser medium), is dispensed with, and thereby high-speed wavelength control is achieved, resulting in reduction in speckle noise when it is mounted on a two-dimensional image display device.