摘要:
Thermally stable diamond constructions comprise a diamond body having a plurality of bonded diamond crystals and a plurality of interstitial regions disposed among the crystals. A metallic substrate is attached to the diamond body. A working surface is positioned along an outside portion of the diamond body, and the diamond body comprises a first region that is substantially free of a catalyst material, and a second region that includes the catalyst material. The diamond body first region extends from the working surface to depth of at least about 0.02 mm to a depth of less than about 0.09 mm. The diamond body includes diamond crystals having an average diamond grain size of greater than about 0.02 mm, and comprises at least 85 percent by volume diamond based on the total volume of the diamond body.
摘要:
Drill bits and cutting elements having a functionally-engineered surface comprise a cermet material selected from the group consisting of refractory metal carbides, nitrides, borides, carbonitrides and mixtures thereof. A functionally-engineered material is disposed over a surface portion one of the cutting elements to form a wear resistant surface thereon having a hardness that is different than that of the underlying cutting element. The wear resistant surface is provided by forming a conformable material mixture by combining one or more powders selected from the group consisting of cermets, carbides, borides, nitrides, carbonitrides, refractory metals, diamond particles, cubic boron nitride particles, Co, Fe, Ni, and combinations thereof, with an applying agent. The applied material mixture is pressurized under conditions of elevated temperature to consolidate and sinter the material mixture, thereby forming the wear resistant surface having desired properties of hardness and/or fracture toughness.
摘要:
Low coefficient of thermal expansion (CTE) cermet compositions of this invention generally comprise a hard phase material and a ductile phase formed from a binder alloy, wherein the binder alloy is specially designed having a CTE that is closely matched to the hard phase material. Hard phase materials used to form low CTE compositions of this invention are selected from the group of carbides consisting of W, Ti, Mo, Nb, V, Si, Hf, Ta, and Cr carbides. The binder alloy is formed from a mixture of metals selected from the group consisting of Co, Ni, Fe, W, Mo, Ti, Ta, V, Nb, C, B, Cr, and Mn. In a preferred embodiment, low CTE compositions comprises WC as the hard phase material, and a ductile phase binder alloy formed from a mixture of Fe, Co, and Ni. The so-formed low CTE composition has a coefficient of thermal expansion that is less than that of conventional WC—Co at the same temperature and having the same metal content, thereby providing improved resistance to thermal shock and thermal fatigue related failure.
摘要:
Thermally stable diamond constructions comprise a diamond body having a plurality of bonded diamond crystals and a plurality of interstitial regions disposed among the crystals. A metallic substrate is attached to the diamond body. A working surface is positioned along an outside portion of the diamond body, and the diamond body comprises a first region that is substantially free of a catalyst material, and a second region that includes the catalyst material. The diamond body first region extends from the working surface to depth of at least about 0.02 mm to a depth of less than about 0.09 mm. The diamond body includes diamond crystals having an average diamond grain size of greater than about 0.02 mm, and comprises at least 85 percent by volume diamond based on the total volume of the diamond body.
摘要:
Thermally stable ultra-hard compact constructions of this invention comprise an ultra-hard material body that includes a thermally stable region positioned adjacent a surface of the body. The thermally stable region is formed from consolidated materials that are thermally stable at temperatures greater than about 750° C. The thermally stable region can occupy a partial portion of or the entire ultra-hard material body. The ultra-hard material body can comprise a composite of separate ultra-hard material elements that each form different regions of the body, at least one of the regions being thermally stable. The ultra-hard material body is attached to a desired substrate, an intermediate material is interposed between the body and the substrate, and the intermediate material joins the substrate and body together by high pressure/high temperature process.
摘要:
A method for making a polycrystalline diamond construction is disclosed, which includes the steps of treating a polycrystalline diamond body having a plurality of bonded together diamond crystals and a solvent catalyst material to remove the solvent catalyst material therefrom, wherein the solvent catalyst material is disposed within interstitial regions between the bonded together diamond crystals, replacing the removed solvent catalyst material with a replacement material, and treating the body having the replacement material to remove substantially all of the replacement material from a first region of the body extending a depth from a body surface, and allowing the remaining amount of the replacement material to reside in a second region of the body that is remote from the surface.
摘要:
A method of forming a thermally stable cutting element that includes disposing at least a portion of a polycrystalline abrasive body containing a catalyzing material to be leached into a leaching agent; and subjecting the polycrystalline abrasive object to an elevated temperature and pressure is disclosed. Thermally stable cutting elements and systems and other methods for forming thermally stable cutting elements are also disclosed.
摘要:
PCD constructions include a PCD body comprising a polycrystalline matrix region, a first region that includes a replacement material positioned remote from a body surface, and a second region that is substantially free of the replacement material and that extends a depth from the body surface. The PCD construction can further include a substrate that is attached to the body. The PCD body is formed by removing a solvent catalyst material used to form the body, replacing the removed solvent catalyst material with a replacement material, and then removing the replacement material from a region of the body to thereby form the second region. The replacement material can be introduced into the PCD body during a HPHT process, and the substrate may or may not be the source of the noncatalyzing material.
摘要:
Thermally stable ultra-hard compact constructions of this invention comprise an ultra-hard material body that includes a thermally stable region positioned adjacent a surface of the body. The thermally stable region is formed from consolidated materials that are thermally stable at temperatures greater than about 750° C. The thermally stable region can occupy a partial portion of or the entire ultra-hard material body. The ultra-hard material body can comprise a composite of separate ultra-hard material elements that each form different regions of the body, at least one of the regions being thermally stable. The ultra-hard material body is attached to a desired substrate, an intermediate material is interposed between the body and the substrate, and the intermediate material joins the substrate and body together by high pressure/high temperature process.
摘要:
An insert for a drill bit that includes diamond particles disposed in a matrix material, wherein the diamond particles have a contiguity of 15% or less is disclosed. A method of forming a diamond-impregnated cutting structure, that includes loading a plurality of substantially uniformly coated diamond particles into a mold cavity, pre-compacting the substantially uniformly coated diamond particles using a cold-press cycle, and heating the compacted, substantially uniformly coated diamond particles with a matrix material to form the diamond impregnated cutting structure is also disclosed.