摘要:
An integrated circuit and a method of making a transistor thereof are provided. In one aspect, the integrated circuit includes a substrate and a plurality of transistors positioned on a plurality of active areas of the substrate. Each of the transistors has a doped region positioned in the substrate, an insulating layer positioned in a tapered trench in the substrate that extends through and sub-divides the doped region into a first source/drain region and a second source/drain region. The insulating layer is channel-shaped with a base, a first upwardly sloping sidewall and a second upwardly sloping sidewall. A gate electrode is positioned on the insulating layer. The channel-shaped gate dielectric layer requires less horizontal substrate area, enabling higher packing density for a given substrate. The sloped sidewalls double as spacers, enabling process simplification.
摘要:
A method of forming integrated isolation regions and active regions includes first forming a plurality of dielectric layers upon a semiconductor substrate. Then, a patterned mask is applied to define portions of the dielectric layers that will remain to form isolation regions and to define portions of the dielectric layers that will be removed in an etch step to create voids to the surface of the semiconductor substrate. Subsequently, epitaxially growth is employed to form active regions within the voids that were previously formed. Transistors are then formed in and on the active regions and are subsequently interconnected to form an integrated circuit.
摘要:
A fabrication process and integrated circuit are provided in which a transistor having increased resistance to punchthrough and decreased channel capacitance is formed. A liner layer is formed within the active region of a transistor to minimize punchthrough. A barrier layer is then formed between the liner layer and the upper surface of the semiconductor substrate. The barrier layer preferably inhibits migration of the liner ions into the junction and channel regions of the transistors during subsequent processing steps. Such migration could deleteriously affect transistor function by, e.g., increasing the threshold voltage and thus decreasing the drive current. The barrier layer also preferably facilitates formation of shallow junctions. In an embodiment, the liner layer may include p-type ions such as boron and the barrier layer may include nitrogen implanted into the semiconductor substrate. Alternatively, the barrier layer may include nitrogen-incorporated epitaxially grown silicon.
摘要:
A method for isolating semiconductor devices comprising providing a semiconductor substrate. The semiconductor substrate includes laterally displaced source/drain regions and channel regions. First and second laterally displaced MOS transistors are formed partially within the semiconductor substrate. The first and second transistors have a common source/drain region. An isolation trench is formed through the common source/drain region and the trench is filled with a trench dielectric material such that the common source/drain region is divided into electrically isolated first and second source/drain regions whereby the first transistor is electrically isolated from the second transistor.
摘要:
The present invention is directed to a method of making a transistor having a very short channel length. The method generally comprises forming a plurality of process layers above a surface of a semiconducting substrate, one of the process layers being comprised of a gate dielectric material and another of the process layers being comprised of a gate conductor material. The method further comprises patterning the plurality of process layers to define an opening and forming a first sidewall spacer in the opening adjacent at least the process layer comprised of a gate conductor material. The method continues with the formation of a gate conductor mask by oxidation of a portion of at least one of the process layers other than those layers comprised of a gate dielectric material and the gate conductor material. A portion of the process layer comprised of a gate conductor material is then removed to define a gate conductor positioned beneath the gate conductor mask, followed by the formation of a second sidewall spacer adjacent the gate conductor. Thereafter, at least one source/drain region is formed to complete the transistor formation. The present invention further comprises a transistor having a channel length of less than 1000 .ANG..
摘要:
A semiconductor manufacturing process comprising providing a semiconductor substrate, forming a gate dielectric on an upper surface of the semiconductor substrate, forming a conductive gate on an upper surface of the gate dielectric, forming a first pair of spacer structures on the first and second sidewalls of the conductive gate, introducing a first source impurity distribution into the semiconductor substrate, forming a second pair of spacer structures on respective exterior sidewalls on the first pair of spacer structures, and introducing a drain impurity distribution into the detached drain region of the semiconductor substrate. The semiconductor substrate includes a channel region laterally displaced between a first source region and a detached drain region. The conductive gate includes a first and a second sidewall. Exterior sidewalls of the first pair of spacer structures are displaced from the first and second sidewalls of the conductive gate by a source displacement. A channel boundary of the first source region is laterally displaced from the second sidewall of the conductive gate by the source displacement. Exterior sidewalls of the second pair of spacer structures are laterally displaced from the first and second sidewalls of the conductive gate by a drain displacement. A channel boundary of the detached drain region is laterally displaced from the first sidewall of the conductive gate by the drain displacement. The conductive gate may comprise heavily doped CVD polysilicon or, alternatively, the conductive gate may be formed from a metal such as aluminum, copper, tungsten, or alloys thereof.
摘要:
A technique is provided for forming interconnects laterally spaced from each other across a semiconductor topography by a deposited dielectric spacer layer. The lateral distance between each interconnect is advantageously dictated by the thickness of the spacer layer rather than by the minimum feature size of a lithographically patterned masking layer. In an embodiment, a first and second conductive interconnects are formed a spaced distance apart upon a semiconductor topography. The first and second interconnects are defined using optical lithography and an etch technique. A dielectric layer is CVD deposited across the exposed surfaces of the first and second interconnects and of the semiconductor topography. The CVD deposition conditions are controlled so as to form a relatively thin spacers laterally adjacent the sidewalls of the interconnects. A conductive material is then deposited across into a trench arranged between the first and second interconnects, and CMP polished such that the upper surface of the conductive material is at an elevational level proximate that of the surfaces of the interconnects. A third interconnect is thereby formed within the trench laterally adjacent the first and second interconnects.
摘要:
During a semiconductor substrate ion implant process thermal energy is supplied to raise the temperature of the semiconductor wafer. The increased temperature of the semiconductor wafer during implantation acts to anneal the implanted impurities or dopants in the wafer, reducing impurity diffusion and reducing the number of fabrication process steps. An ion implant device includes an end station that is adapted for application and control of thermal energy to the end station for raising the temperature of a semiconductor substrate wafer during implantation. The adapted end station includes a heating element for heating the semiconductor substrate wafer, a thermocouple for sensing the temperature of the semiconductor substrate wafer, and a controller for monitoring the sensed temperature and controlling the thermal energy applied to the semiconductor substrate wafer by the heating element. An ion implant device including a system for applying and controlling thermal energy applied to a semiconductor substrate wafer during ion implantation raises the temperature of the wafer to a temperature that is sufficient to activate impurities within the semiconductor substrate wafer when an ion beam is implanting ions to the wafer, but the temperature is insufficient to activate impurities when the ion beam is inactive.
摘要:
An integrated circuit is formed whereby MOS transistor junctions are produced which enhance the overall speed of the integrated circuit. The transistor junctions include multiple implants into the lightly doped drain (LDD) areas of the junction, the source/drain areas of the junction or both the LDD and source/drain areas. The first implant of the multiple implants serves to condition the implant area so that the second and subsequent implants are accurately placed with relatively high concentrations closely below the substrate surface. The resulting junction is therefore one which has relatively high drive strength, low contact resitivity, low source-to-drain parasitic resistance, and relatively low junction capacitance.
摘要:
An integrated circuit and a method of fabricating the same in a substrate are provided. A trench is formed in the substrate. The trench has a sidewall. A first insulating layer is formed on the sidewall. A gate electrode is formed on the first insulating layer. A first source/drain region is formed in the substrate and a second source/drain region is formed in the substrate. A first portion of the first source/drain region and a second portion of the second source/drain region are vertically spaced apart to define a channel region in the substrate. The process enables channel lengths to be set independent of the maximum resolution of the photolithographic system used to pattern the wafer. Very short channel lengths may be implemented.