Abstract:
High voltage isolation devices for semiconductor devices and associated systems, are disclosed herein. The isolation device may support operations of a 3-dimensional NAND memory array of the semiconductor device. In some embodiments, during high voltage operations (e.g., erase operations), the isolation device may provide a high voltage to the memory array while isolating other circuitry supporting low voltage operations of the memory array from the high voltage. The isolation device may include a set of narrow active areas separating the low voltage circuitry from the high voltage and a gate over the narrow active areas. In a further embodiment, the isolation device includes interdigitated narrow active areas and a common gate over the interdigitated narrow active areas to reduce an area occupied by the isolation devices.
Abstract:
Integrated circuits, and integrated circuit devices, might include a semiconductor, a first active area in the semiconductor, a second active area in the semiconductor, and an isolation structure in the semiconductor between the first active area and the second active area. The isolation structure might include a first edge portion extending below a surface of the semiconductor to a first depth, a second edge portion extending below the surface of the semiconductor to the first depth, and an interior portion between the first edge portion and the second edge portion, and extending below the surface of the semiconductor to a second depth, less than the first depth.
Abstract:
Methods for forming semiconductor structures are disclosed, including a method that involves forming sets of conductive material and insulating material, forming a first mask over the sets, forming a first number of contact regions, forming a second mask over a first region of the sets, and removing material from the sets in a second, exposed region laterally adjacent the first region to form a second number of contact regions. Another method includes forming first and second contact regions on portions of sets of conductive materials and insulating materials, each of the second contact regions more proximal to an underlying substrate than each of the first contact regions. Apparatuses such as memory devices including laterally adjacent first and second regions each of which including contact regions of a different portion of a plurality of conductive materials and related methods of forming such devices are also disclosed.
Abstract:
Conductive structures include a plurality of conductive steps and a contact extending at least partially therethrough in communication with at least one of the plurality of conductive steps and insulated from at least another one of the conductive steps. Devices may include such conductive structures. Systems may include a semiconductor device and a stair step conductive structure having a plurality of contacts extending through a step of the stair step conductive structure. Methods of forming conductive structures include forming contacts in contact holes formed through at least one conductive step of a conductive structure. Methods of forming electrical connections in stair step conductive structures include forming contacts in contact holes formed through each step of the stair step conductive structure.
Abstract:
Some embodiments include integrated circuits having first and second transistors. The first transistor is wider than the second transistor. The first and second transistors have first and second active regions, respectively. Dielectric features are associated with the first active region and break up the first active region. The second active region is not broken up to the same extent as the first active region. Some embodiments include methods of forming transistors. Active areas of first and second transistors are formed. The active area of the first transistor is wider than the active area of the second transistor. Dielectric features are formed in the active area of the first transistor. The active area of the first transistor is broken up to a different extent than the active area of the second transistor. The active areas of the first and second transistors are simultaneously doped.
Abstract:
Conductive structures include a plurality of conductive steps and a contact extending at least partially therethrough in communication with at least one of the plurality of conductive steps and insulated from at least another one of the conductive steps. Devices may include such conductive structures. Systems may include a semiconductor device and a stair step conductive structure having a plurality of contacts extending through a step of the stair step conductive structure. Methods of forming conductive structures include forming contacts in contact holes formed through at least one conductive step of a conductive structure. Methods of forming electrical connections in stair step conductive structures include forming contacts in contact holes formed through each step of the stair step conductive structure.
Abstract:
Conductive structures include a plurality of conductive steps and a contact extending at least partially therethrough in communication with at least one of the plurality of conductive steps and insulated from at least another one of the conductive steps. Devices may include such conductive structures. Systems may include a semiconductor device and a stair step conductive structure having a plurality of contacts extending through a step of the stair step conductive structure. Methods of forming conductive structures include forming contacts in contact holes formed through at least one conductive step of a conductive structure. Methods of forming electrical connections in stair step conductive structures include forming contacts in contact holes formed through each step of the stair step conductive structure.
Abstract:
Some embodiments include integrated circuits having first and second transistors. The first transistor is wider than the second transistor. The first and second transistors have first and second active regions, respectively. Dielectric features are associated with the first active region and break up the first active region. The second active region is not broken up to the same extent as the first active region. Some embodiments include methods of forming transistors. Active areas of first and second transistors are formed. The active area of the first transistor is wider than the active area of the second transistor. Dielectric features are formed in the active area of the first transistor. The active area of the first transistor is broken up to a different extent than the active area of the second transistor. The active areas of the first and second transistors are simultaneously doped.
Abstract:
In an embodiment, an array of transistors has a first line coupled to a first transistor. The first line extends over a second transistor that is successively adjacent to the first transistor and over a third transistor that is successively adjacent to the second transistor. A second line is coupled to the second transistor and extends over the third transistor. One or more first dummy lines are coupled to the first line and extend from the first transistor to the second transistor. One or more second dummy lines are coupled to the second line and extend from the second transistor to the third transistor. A collective width of the one or more first dummy lines is greater than a collective width of the one or more second dummy lines.
Abstract:
Methods for forming semiconductor structures are disclosed, including a method that involves forming sets of conductive material and insulating material, forming a first mask over the sets, forming a first number of contact regions, forming a second mask over a first region of the sets, and removing material from of the sets in a second, exposed region laterally adjacent the first region to form a second number of contact regions. Another method includes forming first and second contact regions on portions of sets of conductive materials and insulating materials, each of the second contact regions more proximal to an underlying substrate than each of the first contact regions. Apparatuses such as memory devices including laterally adjacent first and second regions each of which including contact regions of a different portion of a plurality of conductive materials and related methods of forming such devices are also disclosed.