Abstract:
A method and apparatus are for communication in a wireless network in which a User Equipment (UE) associated with a first evolved Node B (eNB) experiences interference from a second eNB. The method includes negotiating by the first eNB of the wireless network with a second eNB of the wireless network for a partitioning of subband resources on an uplink. A first subset of subband resources is assigned to the first eNB, and a second subset of subband resources is assigned to the second eNB. A method and apparatus are for communication in a wireless network. The method includes decoding a downlink control channel received during a protected downlink subframe to determine an uplink subframe n containing a protected subband for uplink transmission. The method also includes transmitting data during the uplink subframe n on the protected subband.
Abstract:
Techniques for estimating and reporting channel quality indicator (CQI) are disclosed. Neighboring base stations may cause strong interference to one another and may be allocated different resources, e.g., different subframes. A UE may observe different levels of interference on different resources. In an aspect, the UE may determine a CQI for resources allocated to a base station and having reduced or no interference from at least one interfering base station. In another aspect, the UE may determine multiple CQI for resources of different types and associated with different interference levels. For example, the UE may determine a first CQI based on at least one first subframe allocated to the base station and having reduced or no interference from the interfering base station(s). The UE may determine a second CQI based on at least one second subframe allocated to the interfering base station(s).
Abstract:
Methods and apparatuses are provided for determining available uplink bandwidth as an achievable throughput for a link. An available link capacity of a link with a cell for a user equipment is estimated based on a communication quality measured in the cell. An available fraction of cell resources for the user equipment over the link is also estimated based at least in part on received assistance information. An available bandwidth of the cell is then estimated as an achievable throughput for the user equipment over the link as a function of the estimated available link capacity and the estimated available fraction of cell resources. Moreover, a network procedure can be performed based at least in part on comparing the achievable throughput to one or more thresholds.
Abstract:
A method and apparatus are for communication in a wireless network in which a User Equipment (UE) associated with a first evolved Node B (eNB) experiences interference from a second eNB. The method includes negotiating by the first eNB of the wireless network with a second eNB of the wireless network for a partitioning of subband resources on an uplink. A first subset of subband resources is assigned to the first eNB, and a second subset of subband resources is assigned to the second eNB. A method and apparatus are for communication in a wireless network. The method includes decoding a downlink control channel received during a protected downlink subframe to determine an uplink subframe n containing a protected subband for uplink transmission. The method also includes transmitting data during the uplink subframe n on the protected subband.
Abstract:
Time division multiplexing (TDM) partitioning is one of the inter-cell interference coordination (ICIC) mechanisms considered for a heterogeneous network (HetNet) ICIC in a co-channel deployment. For example, in subframes that are pre-allocated to an evolved Node B (eNB), neighbor eNBs may not transmit, hence interference experienced by served user equipments (UEs) may be reduced. Semi-persistent scheduling (SPS) grants may have various available periodicities, which may not be compatible with TDM partitioning. Therefore, a UE may miss an SPS opportunity that was scheduled for a subframe that was not usable by the UE. Hence, using SPS grants with small periodicities in a heterogeneous network with TDM partitioning may require changes which may include adjusting the periodicities of the SPS grants, rescheduling of uplink SPS messages based on resource partitioning information (RPI), and/or determining RPI based on current SPS grants.
Abstract:
According to an aspect of the present disclosure, a serving base station determines a path loss and/or a distance measurement between the serving base station and a neighbor base station. A cell-specific power control parameter and a UE transmission power may be determined based on the determined path loss and/or distance measurement. Finally, the serving base station assigns a UE transmission rate based at least on a region where a UE is located, the region being within a serving cell
Abstract:
Methods, systems, and devices are described for hierarchical communications and low latency support within a wireless communications system. An eNB and/or a UE may be configured to operate within the wireless communications system which is at least partially defined through a first layer with first layer transmissions having a first subframe type and a second layer with second layer transmissions having a second subframe type. The first subframe type may have a first round trip time (RTT) between transmission and acknowledgment of receipt of the transmission, and the second layer may have a second RTT that is less than the first RTT. Subframes of the first subframe type may be multiplexed with subframes of the second subframe type, such as through time division multiplexing. In some examples symbols of different duration may be multiplexed such that different symbol durations coexist.
Abstract:
Aspects of the present disclosure provided techniques for wireless communications by a user equipment (UE). An exemplary method, performed by the UE, generally includes identifying a level of coverage enhancement (CE) for the UE to communicate on at least one narrowband region within a wider system bandwidth in which the UE communicates with a base station (BS) and taking one or more actions to alter one or more procedures related to mobility of the UE, based on the level of CE.
Abstract:
Methods, systems, and devices are described for hierarchical communications and low latency support within a wireless communications system. An eNB and/or a UE may be configured to operate within the wireless communications system which is at least partially defined through a first layer with first layer transmissions having a first subframe type and a second layer with second layer transmissions having a second subframe type. The first subframe type may have a first round trip time (RTT) between transmission and acknowledgment of receipt of the transmission, and the second layer may have a second RTT that is less than the first RTT. Subframes of the first subframe type may be multiplexed with subframes of the second subframe type, such as through time division multiplexing. In some examples symbols of different duration may be multiplexed such that they different symbol durations coexist.
Abstract:
Certain aspects of the present disclosure relate to reporting difference in timing between cells using multiple connectivity in a wireless network. A first connection served by at least a first cell and a second connection served by at least a second cell to facilitate communicating with at least the first cell and at least the second cell are established. A reporting configuration specifying one or more parameters related to reporting a timing difference between cells is received. A timing difference between at least the first cell and at least the second cell is determined, and the timing difference is reported to at least the first cell over the first connection or to at least the second cell over the second connection. This can facilitate scheduling time aligned operations over the first and second cells, or related cell groups, in multiple connectivity.