Abstract:
The invention relates to a circuit including a transistor of a first type of channel in series with a transistor of a second type of channel between first and second terminals for applying a power supply potential, each of the transistors being a multiple gate transistor having at least a first (G1P, G1N) and a second (G2P, G2N) independent control gates, characterized in that at least one of the transistors is configured for operating in a depletion mode under the action of a second gate signal applied to its second control gate (G2p, G2N).
Abstract:
A differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line (BL) and an input connected to a second bit line complementary to the first bit line and a second CMOS inverter having an output connected to the second bit line (/BL) and an input connected to the first bit line. Each CMOS inverter includes pull-up and pull-down transistors, wherein the sources of either of the pull-up transistors or the pull-down transistors are electrically coupled and connected to a pull-up voltage source or a pull-down voltage source without an intermediate transistor between the sources of the transistors and the voltage source.
Abstract:
A differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line and an input connected to a second bit line complementary to the first bit line, and a second CMOS inverter having an output connected to the second bit line and an input connected to the first bit line. Each CMOS inverter includes a pull-up transistor and a pull-down transistor, and the sense amplifier has a pair of pass-gate transistors arranged to connect the first and second bit lines to a first and a second global bit lines. Advantageously, the pass-gate transistors are constituted by the pull-up transistors or the pull-down transistors.
Abstract:
The invention relates to a a circuit including a transistor of a first type of channel in series with a transistor of a second type of channel between first and second terminals for applying a power supply potential, each of the transistors being a multiple gate transistor having at least a first (G1P, G1N) and a second (G2P, G2N) independent control gates, characterized in that at least one of the transistors is configured for operating in a depletion mode under the action of a second gate signal applied to its second control gate (G2p, G2N).
Abstract:
The present invention relates to a method for providing a Silicon-On-Insulator (SOI) stack that includes a substrate layer, a first oxide layer on the substrate layer and a silicon layer on the first oxide layer (BOX layer). The method includes providing at least one first region of the SOI stack wherein the silicon layer is thinned by thermally oxidizing a part of the silicon layer and providing at least one second region of the SOI stack wherein the first oxide layer (BOX layer) is thinned by annealing.
Abstract:
This invention provides a semiconductor device structure formed on a conventional semiconductor-on-insulator (SeOI) substrate and including an array of patterns, each pattern being formed by at least one field-effect transistor, each FET transistor having, in the thin film, a source region, a drain region, a channel region, and a front control gate region formed above the channel region. The provided device further includes at least one FET transistor having a pattern including a back control gate region formed in the base substrate beneath the channel region, the back gate region being capable of being biased in order to shift the threshold voltage of the transistor to simulate a modification in the channel width of the transistor or to force the transistor to remain off or on whatever the voltage applied on its front control gate. This invention also provides methods of operating such semiconductor device structures.
Abstract:
The invention provides various embodiments of a memory cell formed on a semiconductor-on-insulator (SeOI) substrate and comprising one or more FET transistors. Each FET transistor has a source region and a drain region at least portions of which are arranged in the thin layer of the SeOI substrate, a channel region in which a trench is made, and a gate region formed in the trench. Specifically, the source, drain and channel regions also have portions which are arranged also beneath the insulating layer of the SeOI substrate; the portion of channel region beneath the insulating layer extends between the portions of the source and drain regions also beneath the insulating layer; and the trench in the channel region extends into the depth of the base substrate beyond the insulating layer. Also, methods for fabricating such memory cells and memory arrays including a plurality of such memory cells.
Abstract:
The invention relates to a differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line and an input connected to a second bit line complementary to the first bit line, and a second CMOS inverter having an output connected to the second bit line and an input connected to the first bit line (BL). Each CMOS inverter includes a pull-up transistor and a pull-down transistor, with the sense amplifier having a pair of precharge transistors arranged to be respectively coupled to the first and second bit lines, to precharge the first and second bit lines to a precharge voltage. The precharge transistors are constituted by the pull-up transistors or by the pull-down transistors.
Abstract:
A circuit made on a semiconductor-on-insulator substrate. The circuit includes a first transistor having a first channel, a second transistor having a second channel, with the transistors provided in serial association between first and second terminals for applying a power supply potential, each of the transistors comprising a drain region and a source region in the thin layer, a channel extending between the source region and the drain region, and a front control gate located above the channel. Each transistor has a back control gate formed in the base substrate below the channel of the transistor and capable of being biased in order to modulate the threshold voltage of the transistor. At least one of the transistors is configured for operating in a depletion mode under the action of a back gate signal which will sufficiently modulate its threshold voltage.
Abstract:
The present invention relates to a method for providing a Silicon-On-Insulator (SOI) stack that includes a substrate layer, a first oxide layer on the substrate layer and a silicon layer on the first oxide layer (BOX layer). The method includes providing at least one first region of the SOI stack wherein the silicon layer is thinned by thermally oxidizing a part of the silicon layer and providing at least one second region of the SOI stack wherein the first oxide layer (BOX layer) is thinned by annealing.