Abstract:
A user equipment (UE). The UE includes a transceiver configured to receive, from an eNodeB (eNB), a received signal strength indicator (RSSI) measurement timing configuration (RMTC) over an unlicensed spectrum in a licensed assisted access (LAA) and at least one processor configured to generate an average RSSI measurement in accordance with the received RMTC, wherein, the at least one processor is further configured to generate a channel occupancy measurement report including a channel occupancy ratio, and wherein the transceiver is further configured to transmit, to the eNB, the channel occupancy measurement report with an RSSI measurement report including the average RSSI measurement.
Abstract:
A method of a first user equipment (UE) in a wireless vehicular communication network. The method includes receiving a plurality of messages including control and data messages from at least one second UE using at least one of multiple resource pools, wherein the plurality of messages comprise event-triggered or periodic traffic and the multiple resource pools comprise at least one of dedicated or shared resource pools. The method further includes determining the at least one of the multiple resource pools to transmit the plurality of messages to the at least one second UE, wherein multiple traffic types or priorities are multiplexed in the at least one of the multiple resource pools. The method further includes dynamically adjusting resource selection of the first UE within the at least one of the multiple resource pools based on a state of the wireless vehicular communication network and directly communicating the plurality of messages to the at least one second UE using the at least one of the multiple resource pools.
Abstract:
A method of a base station (BS) to implement a listen-before-talk (LBT) protocol is provided. The method includes generating for transmission at least one of a discovery reference signal (DRS) or a data signal. The method also includes initiating an LBT protocol based on a single sensing interval to access a channel and transmit the DRS in contiguous orthogonal frequency-division multiplexing (OFDM) symbols. The method further includes initiating an LBT protocol with random back-off to access the channel and transmit the data signal, where a back-off counter value of the LBT protocol with random back-off does not decrement when the DRS is transmitting in the channel.
Abstract:
A method of assigning a device ID of a device-to-device network to a mobile station includes: selecting a subset from a set of parameters from which the device ID is determined, each parameter in the set having a number of bits for complete representation, the subset comprising a number Nd2d of parameters used to determine the device ID; determining a number L of device ID bits to represent the device ID; dividing the L device ID bits into a group of l1 indicator bits and a group of l2 identifier bits, wherein l2 is the difference between the number L of device ID bits and the number l1 of bits allocated to the group of indicator bits; assigning bit values to the l1 indicator bits; allocating a number Ljp of the l2 identifier bits to each of the parameters in the subset; and assigning bit values the l2 identifier bits.
Abstract:
A Device to Device (D2D) user equipment (UE) is configured to support synchronization (sync) in a D2D network. The D2D UE includes an antenna configured to communicate via a D2D communication. The D2D UE also includes processing circuitry configured to communicate with a second portable terminal via the D2D communication. The processing circuitry is further configured to: derive a transmission (TX) timing from a synchronization (sync) source; and transmit a D2D Sync Signal (D2DSS) and Physical D2D Sync Channel (PD2DSCH) configured to indicate a hop number from the sync source. The hop number is indicated via the preamble sequence set and the indicator in PD2DSCH.
Abstract:
A method includes scheduling at least one resource for a Device-to-Device (D2D) transmission control channel (DCCH) carrying a D2D control information (D2DCI) message, transmitting, by a first UE, the DCCH on the at least one DCCH resource to at least one second UE, scheduling at least one resource for a D2D data channel (DDCH), and transmitting, by the first UE, the DDCH on the at least one DDCH resource to the at least one second UE. A UE includes one or multiple antenna, and a processing circuitry configured to schedule at least one resource for a DCCH, transmit the DCCH on the at least one DCCH resource, to at least one second UE through the one or more multiple antenna, schedule at least one resource for a DDCH, and transmit the DDCH on the at least one DDCH resource, to the at least one second UE.
Abstract:
A method and apparatus for managing data in a software defined network. The apparatus is configured to receive control information related to a source node and a target node from a plurality of network devices in the software defined network. The apparatus is also configured to identify a route for data forwarding between the source node and the target node based on the control information. The apparatus is also configured to request data forwarding to the plurality of network devices according to the route. The source node or the target node can be at least one of a user equipment (UE), and a cellsite node including at least a base station.
Abstract:
A method includes configuring one or multiple pools of Device-to-Device (D2D) communication resources by an eNodeB (eNB). The method also includes signaling of the configured pool(s) of D2D communication resources by the eNB to a first User Equipment (UE) and a plurality of UEs using a common broadcast channel; and sending a request for one or multiple D2D communication resources to an eNB by the first UE configured to transmit D2D messages. The method also includes determining one or multiple resources for D2D communication by an eNB for the first UE. The method also includes communicating D2D resource allocation information to the first UE. The method also includes communicating D2D resource allocation information by the first UE to multiple UEs; and transmitting D2D data by the first UE to multiple UEs. Methods for configuring and signaling D2D communication resources by relay or out-of-coverage UEs are also provided.
Abstract:
A method includes determining, at a first eNodeB (eNB) associated with a first cell of a network, that a first user equipment (UE) is to engage in a device discovery process. The method also includes coordinating parameters of the device discovery process with a second eNB. The second eNB is associated with a second cell of the network and with a second UE. The parameters define one or more resources to be used in the first and second cells during the device discovery process. The method further includes communicating at least some of the parameters to the first UE. The device discovery process includes a process in which the first UE identifies one or more other UEs with which the first UE is able to engage in device-to-device communications.
Abstract:
A method of assigning a device ID of a device-to-device network to a mobile station includes: selecting a subset from a set of parameters from which the device ID is determined, each parameter in the set having a number of bits for complete representation, the subset comprising a number Nd2d of parameters used to determine the device ID; determining a number L of device ID bits to represent the device ID; dividing the L device ID bits into a group of l1 indicator bits and a group of l2 identifier bits, wherein l2 is the difference between the number L of device ID bits and the number l1 of bits allocated to the group of indicator bits; assigning bit values to the l1 indicator bits; allocating a number Ljp of the l2 identifier bits to each of the parameters in the subset; and assigning bit values the l2 identifier bits.