Abstract:
A method of decoding a video includes determining an initial value of a quantization parameter (QP) used to perform inverse quantization on coding units included in a slice segment, based on syntax obtained from a bitstream; determining a slice-level initial QP for predicting the QP used to perform inverse quantization on the coding units included in the slice segment, based on the initial value of the QP; and determining a predicted QP of a first quantization group of a parallel-decodable data unit included in the slice segment, based on the slice-level initial QP.
Abstract:
A method of determining a reference image for inter-prediction includes: determining a slice type of a block; if the determining of the slice type indicates that the slice type is a B-slice type configured for uni-directional prediction or bi-directional prediction, determining an inter-prediction direction of the block to be one of a first direction, a second direction, and a bi-direction; if the determining of the inter-prediction direction indicates that the inter-prediction direction is not the second direction, determining a first direction reference index from a first direction reference picture list as a reference index for the block; and if the determining of the inter-prediction direction indicates that the inter-prediction direction is not the first direction, determining a second direction reference index from a second direction reference picture list as a reference index for the block.
Abstract:
Provided are entropy encoding and entropy decoding for video encoding and decoding. The video entropy decoding method includes: determining a bin string and a bin index for a maximum coding unit that is obtained from a bitstream; determining a value of a syntax element by comparing the determined bin string with bin strings that is assignable to the syntax element in the bin index; storing context variables for the maximum coding unit when the syntax element is a last syntax element in the maximum coding unit, a dependent slice segment is includable in a picture in which the maximum coding unit is included, and the maximum coding unit is a last maximum coding unit in a slice segment; and restoring symbols of the maximum coding unit by using the determined value of the syntax element.
Abstract:
Provided are entropy encoding and entropy decoding for video encoding and decoding. The video entropy decoding method includes: determining a bin string and a bin index for a maximum coding unit that is obtained from a bitstream; determining a value of a syntax element by comparing the determined bin string with bin strings that is assignable to the syntax element in the bin index; storing context variables for the maximum coding unit when the syntax element is a last syntax element in the maximum coding unit, a dependent slice segment is includable in a picture in which the maximum coding unit is included, and the maximum coding unit is a last maximum coding unit in a slice segment; and restoring symbols of the maximum coding unit by using the determined value of the syntax element.
Abstract:
Provided are entropy encoding and entropy decoding for video encoding and decoding.The video entropy decoding method includes: determining a bin string and a bin index for a maximum coding unit that is obtained from a bitstream; determining a value of a syntax element by comparing the determined bin string with bin strings that is assignable to the syntax element in the bin index; storing context variables for the maximum coding unit when the syntax element is a last syntax element in the maximum coding unit, a dependent slice segment is includable in a picture in which the maximum coding unit is included, and the maximum coding unit is a last maximum coding unit in a slice segment; and restoring symbols of the maximum coding unit by using the determined value of the syntax element.
Abstract:
Provided are a video encoding method and a video decoding method according to spatial subdivisions based on splitting a picture into a first tile and a second tile, and splitting a current tile among the first tile and the second tile into at least one slice segment, encoding the first tile and the second tile, independently from each other, and encoding maximum coding units of a current slice segment among the at least one slice segment included in the current tile, with respect to the at least one slice segment included in the current tile.
Abstract:
A video encoding method is provided, the method includes: encoding a current region of a video by performing a transformation on the current region by using transformation units in a variable tree-structure which are determined from among transformation units that are hierarchically split from a base transformation unit with respect to the current region and which are generated based on a maximum split level of a transformation unit; and outputting encoded data of the current region, information about an encoding mode, and transformation-unit hierarchical-structure information comprising maximum size information and minimum size information of the transformation unit with respect to the video.
Abstract:
Encoding and decoding a video using transformation index that indicates information that indicates a structure of a transformation unit transforming data of a current coding unit.
Abstract:
Encoding and decoding a motion vector using a motion vector of a current block of a current picture, which indicates a region corresponding to the current block in a first reference picture and one of generating a motion vector predictor from a motion vector of the adjacent block having a motion vector referring to the first reference picture among adjacent blocks encoded before the current block and a motion vector of an adjacent block referring to a second reference picture other than the first reference picture.
Abstract:
A method and apparatus for encoding video by using deblocking filtering, and a method and apparatus for decoding video by using deblocking filtering are provided. The method of encoding video includes: splitting a picture into a maximum coding unit; determining coding units of coded depths and encoding modes for the coding units of the maximum coding unit by prediction encoding the coding units of the maximum coding unit based on at least one prediction unit and transforming the coding units based on at least one transformation unit, wherein the maximum coding unit is hierarchically split into the coding units as a depth deepens, and the coded depths are depths where the maximum coding unit is encoded in the coding units; and performing deblocking filtering on video data being inversely transformed into a spatial domain in the coding units, in consideration of the encoding modes.