Abstract:
A method and an apparatus for transmitting/receiving channel state information for use in multi-antenna system are provided. A signal communication method of a base station having a plurality of antennas in a wireless communication system includes determining antenna ports of first and second directions based on directions of the plurality of antennas, allocating channel measurement resources for the respective antenna ports to a terminal, transmitting a feedback configuration to the terminal according to the channel measurement resources, and receiving feedback information from the terminal based on the channel measurement resource and the feedback configuration. The signal transmission/reception method and apparatus are advantageous in transmitting/receiving channel state information efficiently in the system using a plurality of antennas.
Abstract:
A method and an apparatus for transmitting uplink/downlink data on time division duplexing (TDD) carriers are provided. The method includes transmitting to a base station in a primary cell (PCell) and a secondary cell (SCell), a TDD uplink (UL)/downlink (DL) configuration of the PCell having a DL subframe super-set or UL subset that are common in the SCell and the PCell and a TDD UL-DL configuration differing from each other, receiving data at a first subframe in the SCell, and transmitting, when a UL subframe set of the SCell is a subset of a UL subframe of the PCell, a feedback corresponding to the data at a subframe predefined in association with the first subframe in the PCell according to the TDD UL-DL configuration of the SCell. The method supports both the self-scheduling and cross-carrier scheduling of the UE using carriers of different TDD configurations.
Abstract:
The present disclosure relates to a communication technique and a system thereof for fusing, with IoT technology, a 5G communication system for supporting a higher data transmission rate than a beyond 4G system. The present disclosure may be applied to intelligent services (such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security and safety related services, etc.). The present disclosure relates to a method for receiving downlink data of a terminal in a wireless communication system, and suggests a method and an apparatus for receiving downlink data, the method comprising: a step for checking a transmission parameter regarding data being transmitted from an interference cell; a step for determining, on the basis of the transmission parameter, whether or not an interference signal exists; a step for determining, on the basis of any one of the transmission parameter and the determination on whether or not an interference signal exists, whether or not network assisted interference cancellation and suppression (NAICS) technology is applied; and a step for decoding the downlink data on the basis of the determination on whether or not the NAICS technology is applied.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. For licensed assisted access (LAA) technology used in a wireless communication system, an apparatus and a method for scheduling downlink data at a base station is provided. In the method, based on at least one part of parameters of a bearer to which the downlink data belongs, the base station determines a serving cell for scheduling the downlink data. Further, information about the identified serving cell is transmitted to a user equipment (UE).
Abstract:
A control channel transmission/reception method and apparatus are provided. The control channel transmission method of a base station includes acquiring a criterion for sorting control channels, sorting the controls channels into at least two control channel sets based on the criterion, configuring the control channels by allocating at least one antenna port to each control channel set, and transmitting the control channels as configured.
Abstract:
The present invention relates to a method and an apparatus for transmitting interference related control information in order to improve reception performance of a UE which receives a downlink signal, in a cellular mobile communication system based on an Long Term Evolution-Advanced (LTE-A) system. A communication method of a UE according to an embodiment of the present invention includes receiving information on a resource allocation unit of an interference signal from an eNB; performing blind detection using information on the resource allocation unit of the interference signal; performing error-correcting coding using a transmission parameter for interference and a result obtained by the blind detection; and decoding reception data. According to an embodiment of the present invention, a reception performance of the UE can be improved through interference cancellation and suppression.
Abstract:
A method and an apparatus for transmitting uplink/downlink data on time division duplexing (TDD) carriers are provided. The method includes transmitting to a base station in a primary cell (PCell) and a secondary cell (SCell), a TDD uplink (UL)/downlink (DL) configuration of the PCell having a DL subframe super-set or UL subset that are common in the SCell and the PCell and a TDD UL-DL configuration differing from each other, receiving data at a first subframe in the SCell, and transmitting, when a UL subframe set of the SCell is a subset of a UL subframe of the PCell, a feedback corresponding to the data at a subframe predefined in association with the first subframe in the PCell according to the TDD UL-DL configuration of the SCell. The method supports both the self-scheduling and cross-carrier scheduling of the UE using carriers of different TDD configurations.
Abstract:
A method for transmitting control information by a base station in a wireless communication system is provided. The method includes determining a precoder to be applied to a resource and a Demodulation Reference Signal (DMRS) port, the resource being used to transmit the control information, and the DMRS port corresponding to the resource and being used to transmit a DMRS, precoding the resource and the DMRS port by using the determined precoder, and transmitting the control information and the DMRS to a user equipment.
Abstract:
A control channel transmission/reception method and an apparatus for transmitting/receiving control channels using a resource allocation scheme applicable regardless of reference signal transmission or whether the reference signal is transmitted in distributed transmission mode or localized transmission mode are provided. The control channel transmission method includes mapping a Demodulation Reference Signal (DMRS) to Resource Elements (REs) of a Resource Block (RB) for transmitting a control channel, mapping the control channel to the REs numbered with numbers of predetermined number of Resource Element Groups (REGs) in a frequency-first ascending order cyclically, with the exception of the REs to which the DMRS is mapped, and transmitting the DMRS and the control channel.
Abstract:
A method and apparatus for transmitting and receiving a signal using a channel output feedback in a wireless communication system and Hybrid-Automatic Repeat Request (ARQ) are provided. The method and apparatus include a transmitter configured to transmit to a base station and a first packet on a precoder received from the base station. A receiver configured to receive, from the base station, a Channel Output Feedback (COF) of the transmitted first packet and information for transmitting a second packet. A controller configured to prepare a variant of the second packet using the COF and the received information for transmitting the second packet, and to control to transmit the prepared variant to the base station.